David Hall, Ben Talbot, S. Bista, Haoyang Zhang, Rohan Smith, Feras Dayoub, Niko Sünderhauf
{"title":"用于主动机器人的BenchBot环境(BEAR):用于主动场景理解研究的模拟数据","authors":"David Hall, Ben Talbot, S. Bista, Haoyang Zhang, Rohan Smith, Feras Dayoub, Niko Sünderhauf","doi":"10.1177/02783649211069404","DOIUrl":null,"url":null,"abstract":"We present a platform to foster research in active scene understanding, consisting of high-fidelity simulated environments and a simple yet powerful API that controls a mobile robot in simulation and reality. In contrast to static, pre-recorded datasets that focus on the perception aspect of scene understanding, agency is a top priority in our work. We provide three levels of robot agency, allowing users to control a robot at varying levels of difficulty and realism. While the most basic level provides pre-defined trajectories and ground-truth localisation, the more realistic levels allow us to evaluate integrated behaviours comprising perception, navigation, exploration and SLAM. In contrast to existing simulation environments, we focus on robust scene understanding research using our environment interface (BenchBot) that provides a simple API for seamless transition between the simulated environments and real robotic platforms. We believe this scaffolded design is an effective approach to bridge the gap between classical static datasets without any agency and the unique challenges of robotic evaluation in reality. Our BenchBot Environments for Active Robotics (BEAR) consist of 25 indoor environments under day and night lighting conditions, a total of 1443 objects to be identified and mapped, and ground-truth 3D bounding boxes for use in evaluation. BEAR website: https://qcr.github.io/dataset/benchbot-bear-data/.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"259 - 269"},"PeriodicalIF":7.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BenchBot environments for active robotics (BEAR): Simulated data for active scene understanding research\",\"authors\":\"David Hall, Ben Talbot, S. Bista, Haoyang Zhang, Rohan Smith, Feras Dayoub, Niko Sünderhauf\",\"doi\":\"10.1177/02783649211069404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a platform to foster research in active scene understanding, consisting of high-fidelity simulated environments and a simple yet powerful API that controls a mobile robot in simulation and reality. In contrast to static, pre-recorded datasets that focus on the perception aspect of scene understanding, agency is a top priority in our work. We provide three levels of robot agency, allowing users to control a robot at varying levels of difficulty and realism. While the most basic level provides pre-defined trajectories and ground-truth localisation, the more realistic levels allow us to evaluate integrated behaviours comprising perception, navigation, exploration and SLAM. In contrast to existing simulation environments, we focus on robust scene understanding research using our environment interface (BenchBot) that provides a simple API for seamless transition between the simulated environments and real robotic platforms. We believe this scaffolded design is an effective approach to bridge the gap between classical static datasets without any agency and the unique challenges of robotic evaluation in reality. Our BenchBot Environments for Active Robotics (BEAR) consist of 25 indoor environments under day and night lighting conditions, a total of 1443 objects to be identified and mapped, and ground-truth 3D bounding boxes for use in evaluation. BEAR website: https://qcr.github.io/dataset/benchbot-bear-data/.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"41 1\",\"pages\":\"259 - 269\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649211069404\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211069404","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
BenchBot environments for active robotics (BEAR): Simulated data for active scene understanding research
We present a platform to foster research in active scene understanding, consisting of high-fidelity simulated environments and a simple yet powerful API that controls a mobile robot in simulation and reality. In contrast to static, pre-recorded datasets that focus on the perception aspect of scene understanding, agency is a top priority in our work. We provide three levels of robot agency, allowing users to control a robot at varying levels of difficulty and realism. While the most basic level provides pre-defined trajectories and ground-truth localisation, the more realistic levels allow us to evaluate integrated behaviours comprising perception, navigation, exploration and SLAM. In contrast to existing simulation environments, we focus on robust scene understanding research using our environment interface (BenchBot) that provides a simple API for seamless transition between the simulated environments and real robotic platforms. We believe this scaffolded design is an effective approach to bridge the gap between classical static datasets without any agency and the unique challenges of robotic evaluation in reality. Our BenchBot Environments for Active Robotics (BEAR) consist of 25 indoor environments under day and night lighting conditions, a total of 1443 objects to be identified and mapped, and ground-truth 3D bounding boxes for use in evaluation. BEAR website: https://qcr.github.io/dataset/benchbot-bear-data/.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.