对称正定矩阵与李群的加性模型

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2022-09-29 DOI:10.1093/biomet/asac055
Z. Lin, H. Müller, B. U. Park
{"title":"对称正定矩阵与李群的加性模型","authors":"Z. Lin, H. Müller, B. U. Park","doi":"10.1093/biomet/asac055","DOIUrl":null,"url":null,"abstract":"\n We propose and investigate an additive regression model for symmetric positive-definite matrix valued responses and multiple scalar predictors. The model exploits the abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established and numerical studies show that the proposed model enjoys good numerical performance and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Additive Models for Symmetric Positive-Definite Matrices and Lie Groups\",\"authors\":\"Z. Lin, H. Müller, B. U. Park\",\"doi\":\"10.1093/biomet/asac055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose and investigate an additive regression model for symmetric positive-definite matrix valued responses and multiple scalar predictors. The model exploits the abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established and numerical studies show that the proposed model enjoys good numerical performance and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asac055\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

我们提出并研究了对称正定矩阵值响应和多个标量预测因子的加性回归模型。该模型利用了从对称正定矩阵的log Cholesky和log Euclidean框架中继承的阿贝尔群结构,并自然扩展到一般阿贝尔李群。所提出的可加性模型被证明连接到切线空间上的可加模型。这种联系不仅需要一种有效的算法来估计分量函数,而且允许将所提出的加性模型推广到一般的黎曼流形。建立了估计分量函数的最优渐近收敛速度和正态性,数值研究表明,当有多个预测因子时,该模型具有良好的数值性能,不受维数诅咒的影响。通过对脑扩散张量成像数据的分析,证明了该模型的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive Models for Symmetric Positive-Definite Matrices and Lie Groups
We propose and investigate an additive regression model for symmetric positive-definite matrix valued responses and multiple scalar predictors. The model exploits the abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established and numerical studies show that the proposed model enjoys good numerical performance and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信