{"title":"从平方和到算术Siegel–Weil公式","authors":"Chao Li","doi":"10.1090/bull/1786","DOIUrl":null,"url":null,"abstract":"The main goal of this expository article is to survey recent progress on the arithmetic Siegel–Weil formula and its applications. We begin with the classical sum of two squares problem and put it in the context of the Siegel–Weil formula. We then motivate the geometric and arithmetic Siegel–Weil formula using the classical example of the product of modular curves. After explaining the recent result on the arithmetic Siegel–Weil formula for Shimura varieties of arbitrary dimension, we discuss some aspects of the proof and its application to the arithmetic inner product formula and the Beilinson–Bloch conjecture. Rather than being intended as a complete survey of this vast field, this article focuses more on examples and background to provide easier access to several recent works by the author with W. Zhang and Y. Liu.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From sum of two squares to arithmetic Siegel–Weil formulas\",\"authors\":\"Chao Li\",\"doi\":\"10.1090/bull/1786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this expository article is to survey recent progress on the arithmetic Siegel–Weil formula and its applications. We begin with the classical sum of two squares problem and put it in the context of the Siegel–Weil formula. We then motivate the geometric and arithmetic Siegel–Weil formula using the classical example of the product of modular curves. After explaining the recent result on the arithmetic Siegel–Weil formula for Shimura varieties of arbitrary dimension, we discuss some aspects of the proof and its application to the arithmetic inner product formula and the Beilinson–Bloch conjecture. Rather than being intended as a complete survey of this vast field, this article focuses more on examples and background to provide easier access to several recent works by the author with W. Zhang and Y. Liu.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1786\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1786","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
From sum of two squares to arithmetic Siegel–Weil formulas
The main goal of this expository article is to survey recent progress on the arithmetic Siegel–Weil formula and its applications. We begin with the classical sum of two squares problem and put it in the context of the Siegel–Weil formula. We then motivate the geometric and arithmetic Siegel–Weil formula using the classical example of the product of modular curves. After explaining the recent result on the arithmetic Siegel–Weil formula for Shimura varieties of arbitrary dimension, we discuss some aspects of the proof and its application to the arithmetic inner product formula and the Beilinson–Bloch conjecture. Rather than being intended as a complete survey of this vast field, this article focuses more on examples and background to provide easier access to several recent works by the author with W. Zhang and Y. Liu.
期刊介绍:
The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.