{"title":"一维极性晶格气体中约束准粒子动力学的稳定化","authors":"Guo-Qing Zhang, L. F. Quezada","doi":"10.1103/PhysRevB.108.094202","DOIUrl":null,"url":null,"abstract":"The disorder-free localization that occurred in the study of relaxation dynamics in far-from-equilibrium quantum systems has been widely explored. Here we investigate the interplay between the dipole-dipole interaction (DDI) and disorder in the hard-core polar bosons in a one-dimensional lattice. We find that the localized dynamics will eventually thermalize in the clean gas, but can be stabilized with the existence of a small disorder proportional to the inverse of DDI strength. From the effective dimer Hamiltonian, we show that the effective second-order hopping of quasiparticles between nearest-neighbor sites is suppressed by the disorder with strength similar to the effective hopping amplitude. The significant gap between the largest two eigenvalues of the entanglement spectrum indicates the dynamical confinement. We also find that the disorder related sample-to-sample fluctuation is suppressed by the DDI. Finally, we extend our research from the uncorrelated random disorder to the correlated quasiperiodic disorder and from the two-dimer model to the half-filling system, obtaining similar results.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing confined quasiparticle dynamics in one-dimensional polar lattice gases\",\"authors\":\"Guo-Qing Zhang, L. F. Quezada\",\"doi\":\"10.1103/PhysRevB.108.094202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The disorder-free localization that occurred in the study of relaxation dynamics in far-from-equilibrium quantum systems has been widely explored. Here we investigate the interplay between the dipole-dipole interaction (DDI) and disorder in the hard-core polar bosons in a one-dimensional lattice. We find that the localized dynamics will eventually thermalize in the clean gas, but can be stabilized with the existence of a small disorder proportional to the inverse of DDI strength. From the effective dimer Hamiltonian, we show that the effective second-order hopping of quasiparticles between nearest-neighbor sites is suppressed by the disorder with strength similar to the effective hopping amplitude. The significant gap between the largest two eigenvalues of the entanglement spectrum indicates the dynamical confinement. We also find that the disorder related sample-to-sample fluctuation is suppressed by the DDI. Finally, we extend our research from the uncorrelated random disorder to the correlated quasiperiodic disorder and from the two-dimer model to the half-filling system, obtaining similar results.\",\"PeriodicalId\":48701,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.108.094202\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevB.108.094202","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stabilizing confined quasiparticle dynamics in one-dimensional polar lattice gases
The disorder-free localization that occurred in the study of relaxation dynamics in far-from-equilibrium quantum systems has been widely explored. Here we investigate the interplay between the dipole-dipole interaction (DDI) and disorder in the hard-core polar bosons in a one-dimensional lattice. We find that the localized dynamics will eventually thermalize in the clean gas, but can be stabilized with the existence of a small disorder proportional to the inverse of DDI strength. From the effective dimer Hamiltonian, we show that the effective second-order hopping of quasiparticles between nearest-neighbor sites is suppressed by the disorder with strength similar to the effective hopping amplitude. The significant gap between the largest two eigenvalues of the entanglement spectrum indicates the dynamical confinement. We also find that the disorder related sample-to-sample fluctuation is suppressed by the DDI. Finally, we extend our research from the uncorrelated random disorder to the correlated quasiperiodic disorder and from the two-dimer model to the half-filling system, obtaining similar results.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter