D. Karlov, Iurii Prokazov, A. Bakshtanin, T. Matveeva, L. Kondratenko
{"title":"风能预测神经网络模型性能优化","authors":"D. Karlov, Iurii Prokazov, A. Bakshtanin, T. Matveeva, L. Kondratenko","doi":"10.15866/iremos.v14i3.19890","DOIUrl":null,"url":null,"abstract":"High variability and intermittency of wind create difficulties in managing and optimizing wind farms. Short-term forecasts are essential for a power plant’s safe operation. The aim of this work was to develop an efficient model for forecasting wind energy in the short term using machine learning and metaheuristics methods. The study improved a fruit Fly Optimization Algorithm (FOA) with decreasing step size to enhance the forecasting accuracy of the backpropagation neural network and radial basis function neural network. The efficiencies of the proposed methods were evaluated by comparing the values of the mean absolute percentage error, the root-mean-square error, and the standard deviation error. It was found that the optimized models demonstrate the high efficiency of forecasting in comparison with actual meteorological data. The error estimation analysis showed that the error values for the optimized models are 4-5 times lower than those for the same models without optimization. It has been shown that FOA with decreasing step size for neural network improves accuracy and computational speed for short-term wind energy forecasts. This approach can be applied in programs for real wind farms and studied for other network parameters, such as weights and offsets.","PeriodicalId":38950,"journal":{"name":"International Review on Modelling and Simulations","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Neural Network Model Performance for Wind Energy Forecasting\",\"authors\":\"D. Karlov, Iurii Prokazov, A. Bakshtanin, T. Matveeva, L. Kondratenko\",\"doi\":\"10.15866/iremos.v14i3.19890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High variability and intermittency of wind create difficulties in managing and optimizing wind farms. Short-term forecasts are essential for a power plant’s safe operation. The aim of this work was to develop an efficient model for forecasting wind energy in the short term using machine learning and metaheuristics methods. The study improved a fruit Fly Optimization Algorithm (FOA) with decreasing step size to enhance the forecasting accuracy of the backpropagation neural network and radial basis function neural network. The efficiencies of the proposed methods were evaluated by comparing the values of the mean absolute percentage error, the root-mean-square error, and the standard deviation error. It was found that the optimized models demonstrate the high efficiency of forecasting in comparison with actual meteorological data. The error estimation analysis showed that the error values for the optimized models are 4-5 times lower than those for the same models without optimization. It has been shown that FOA with decreasing step size for neural network improves accuracy and computational speed for short-term wind energy forecasts. This approach can be applied in programs for real wind farms and studied for other network parameters, such as weights and offsets.\",\"PeriodicalId\":38950,\"journal\":{\"name\":\"International Review on Modelling and Simulations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review on Modelling and Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/iremos.v14i3.19890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review on Modelling and Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/iremos.v14i3.19890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Optimizing Neural Network Model Performance for Wind Energy Forecasting
High variability and intermittency of wind create difficulties in managing and optimizing wind farms. Short-term forecasts are essential for a power plant’s safe operation. The aim of this work was to develop an efficient model for forecasting wind energy in the short term using machine learning and metaheuristics methods. The study improved a fruit Fly Optimization Algorithm (FOA) with decreasing step size to enhance the forecasting accuracy of the backpropagation neural network and radial basis function neural network. The efficiencies of the proposed methods were evaluated by comparing the values of the mean absolute percentage error, the root-mean-square error, and the standard deviation error. It was found that the optimized models demonstrate the high efficiency of forecasting in comparison with actual meteorological data. The error estimation analysis showed that the error values for the optimized models are 4-5 times lower than those for the same models without optimization. It has been shown that FOA with decreasing step size for neural network improves accuracy and computational speed for short-term wind energy forecasts. This approach can be applied in programs for real wind farms and studied for other network parameters, such as weights and offsets.
期刊介绍:
The International Review on Modelling and Simulations (IREMOS) is a peer-reviewed journal that publishes original theoretical and applied papers concerning Modelling, Numerical studies, Algorithms and Simulations in all the engineering fields. The topics to be covered include, but are not limited to: theoretical aspects of modelling and simulation, methods and algorithms for design control and validation of systems, tools for high performance computing simulation. The applied papers can deal with Modelling, Numerical studies, Algorithms and Simulations regarding all the engineering fields; particularly about the electrical engineering (power system, power electronics, automotive applications, power devices, energy conversion, electrical machines, lighting systems and so on), the mechanical engineering (kinematics and dynamics of rigid bodies, vehicle system dynamics, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, computational mechanics, mechanics of materials and structures, plasticity, hydromechanics, aerodynamics, aeroelasticity, biomechanics, geomechanics, thermodynamics, heat transfer, refrigeration, fluid mechanics, micromechanics, nanomechanics, robotics, mechatronics, combustion theory, turbomachinery, manufacturing processes and so on), the chemical engineering (chemical reaction engineering, environmental chemical engineering, materials synthesis and processing and so on). IREMOS also publishes letters to the Editor and research notes which discuss new research, or research in progress in any of the above thematic areas.