{"title":"修正Korteweg-de Vries方程多呼吸子的唯一性","authors":"A. Semenov","doi":"10.4171/rmi/1363","DOIUrl":null,"url":null,"abstract":"A bstract . We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝 ( 𝑡 ) − 𝑃 ( 𝑡 ) → 0 when 𝑡 → +∞ , which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time. We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the uniqueness of multi-breathers of the modified Korteweg–de Vries equation\",\"authors\":\"A. Semenov\",\"doi\":\"10.4171/rmi/1363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝 ( 𝑡 ) − 𝑃 ( 𝑡 ) → 0 when 𝑡 → +∞ , which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time. We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the uniqueness of multi-breathers of the modified Korteweg–de Vries equation
A bstract . We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝 ( 𝑡 ) − 𝑃 ( 𝑡 ) → 0 when 𝑡 → +∞ , which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time. We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.
期刊介绍:
Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.