最后一个子代修正分支随机漫步的最右位置的大偏差

Pub Date : 2021-06-15 DOI:10.1214/22-ECP446
P. P. Ghosh
{"title":"最后一个子代修正分支随机漫步的最右位置的大偏差","authors":"P. P. Ghosh","doi":"10.1214/22-ECP446","DOIUrl":null,"url":null,"abstract":"In this work, we consider a modification of the usual Branching Random Walk (BRW) , where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the n -th generation, which may be different from the driving increment distribution. This model was first introduced by Bandyopadhyay and Ghosh [2] and they termed it as Last Progeny Modified Branching Random Walk (LPM-BRW) . Under very minimal assumptions, we derive the large deviation principle (LDP) for the right-most position of a particle in generation n . As a byproduct, we also complete the LDP for the classical model, which complements the earlier work by Gantert and Höfelsauer [7].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large deviations for the right-most position of a last progeny modified branching random walk\",\"authors\":\"P. P. Ghosh\",\"doi\":\"10.1214/22-ECP446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider a modification of the usual Branching Random Walk (BRW) , where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the n -th generation, which may be different from the driving increment distribution. This model was first introduced by Bandyopadhyay and Ghosh [2] and they termed it as Last Progeny Modified Branching Random Walk (LPM-BRW) . Under very minimal assumptions, we derive the large deviation principle (LDP) for the right-most position of a particle in generation n . As a byproduct, we also complete the LDP for the classical model, which complements the earlier work by Gantert and Höfelsauer [7].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ECP446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ECP446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们考虑了对通常的分支随机游动(BRW)的修改,其中我们在第n代给所有粒子给定一定的独立和同分布(i.i.d.)位移,这可能与驱动增量分布不同。该模型由Bandyopadhyay和Ghosh[2]首次引入,他们将其称为最后一代改良分支随机游动(LPM-BRW)。在非常小的假设下,我们导出了粒子在第n代中最右边位置的大偏差原理(LDP)。作为副产品,我们还完成了经典模型的LDP,这补充了Gantert和Höfelsauer[7]的早期工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Large deviations for the right-most position of a last progeny modified branching random walk
In this work, we consider a modification of the usual Branching Random Walk (BRW) , where we give certain independent and identically distributed (i.i.d.) displacements to all the particles at the n -th generation, which may be different from the driving increment distribution. This model was first introduced by Bandyopadhyay and Ghosh [2] and they termed it as Last Progeny Modified Branching Random Walk (LPM-BRW) . Under very minimal assumptions, we derive the large deviation principle (LDP) for the right-most position of a particle in generation n . As a byproduct, we also complete the LDP for the classical model, which complements the earlier work by Gantert and Höfelsauer [7].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信