菜豆LBD转录因子基因的全基因组鉴定及在不同非生物胁迫下的表达分析

IF 2.6 3区 生物学 Q2 PLANT SCIENCES
Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du
{"title":"菜豆LBD转录因子基因的全基因组鉴定及在不同非生物胁迫下的表达分析","authors":"Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du","doi":"10.1080/17429145.2022.2095449","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"731 - 743"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses\",\"authors\":\"Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du\",\"doi\":\"10.1080/17429145.2022.2095449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\"17 1\",\"pages\":\"731 - 743\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2022.2095449\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2095449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

摘要侧方器官边界结构域(LBD)蛋白是一种植物特异性转录因子,在植物侧方器官发育和抗逆性中起着关键作用。然而,在普通菜豆(Phaseolus vulgaris L.)中尚未鉴定出LBD基因。本文共鉴定出47个普通菜豆LBD基因(PvLBD)。同一亚科的成员具有相似的遗传结构。Synteny分析表明,普通大豆基因组中的LBD与大豆(Glycine max L.)的共线性大于与拟南芥(Arabidopsis)和水稻(Oryza sativa L.)的同线性。Phytozome数据分析显示,同一组织不同发育阶段的PvLBD基因表达丰度存在显著差异。qRT-PCR结果显示,NaCl、CdCl2和HgCl2胁迫上调和下调了19%的PvLBD基因。本研究为进一步分析PvLBD基因家族的功能提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses
ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信