安卓恶意软件检测的特征选择方法研究

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
D. Kshirsagar, Pooja Agrawal
{"title":"安卓恶意软件检测的特征选择方法研究","authors":"D. Kshirsagar, Pooja Agrawal","doi":"10.1080/02522667.2022.2133218","DOIUrl":null,"url":null,"abstract":"Abstract Feature Selection (FS) provides a vital role in the android malware detection system. The researchers have presented FS methods and tested them on benchmark datasets, including static types of features extracted from applications. This paper studies FS methods used in traditional android malware detection systems. These FS methods are implemented on the benchmark datasets such as Genome project, Google PlayStore, AndroZoo, and Drebin consist of static types of extracted features from applications. These traditional methods are studied and implemented on the latest dataset, such as CIC-MalDroid2020 dataset, which includes the latest types of malware and 470 dynamic types of features. The experimentation is performed on CIC-MalDroid2020 dataset with the Random Forest (RF) classifier using traditional FS methods, and performance is compared with the original feature set. Finally, the investigation with the RF classifier on CIC-MalDroid2020 dataset using the obtained 80 features from 470 original features by the ReliefF method produces higher precision of 97.4647% and a lower FAR of 0.1409 for malware detection.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"2111 - 2120"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of feature selection methods for android malware detection\",\"authors\":\"D. Kshirsagar, Pooja Agrawal\",\"doi\":\"10.1080/02522667.2022.2133218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Feature Selection (FS) provides a vital role in the android malware detection system. The researchers have presented FS methods and tested them on benchmark datasets, including static types of features extracted from applications. This paper studies FS methods used in traditional android malware detection systems. These FS methods are implemented on the benchmark datasets such as Genome project, Google PlayStore, AndroZoo, and Drebin consist of static types of extracted features from applications. These traditional methods are studied and implemented on the latest dataset, such as CIC-MalDroid2020 dataset, which includes the latest types of malware and 470 dynamic types of features. The experimentation is performed on CIC-MalDroid2020 dataset with the Random Forest (RF) classifier using traditional FS methods, and performance is compared with the original feature set. Finally, the investigation with the RF classifier on CIC-MalDroid2020 dataset using the obtained 80 features from 470 original features by the ReliefF method produces higher precision of 97.4647% and a lower FAR of 0.1409 for malware detection.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"43 1\",\"pages\":\"2111 - 2120\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2133218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2133218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

特征选择(FS)在android恶意软件检测系统中起着至关重要的作用。研究人员提出了FS方法,并在基准数据集上进行了测试,包括从应用程序中提取的静态类型的特征。本文研究了传统android恶意软件检测系统中使用的FS方法。这些FS方法是在诸如Genome project, b谷歌PlayStore, AndroZoo和Drebin等基准数据集上实现的,这些数据集由从应用程序中提取的静态类型特征组成。这些传统方法在最新的数据集上进行了研究和实现,如CIC-MalDroid2020数据集,该数据集包含最新的恶意软件类型和470种动态特征。在CIC-MalDroid2020数据集上使用传统FS方法进行随机森林(RF)分类器的实验,并与原始特征集进行性能比较。最后,利用ReliefF方法从470个原始特征中获得的80个特征,利用RF分类器对CIC-MalDroid2020数据集进行调查,恶意软件检测的准确率达到97.4647%,FAR较低,为0.1409。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of feature selection methods for android malware detection
Abstract Feature Selection (FS) provides a vital role in the android malware detection system. The researchers have presented FS methods and tested them on benchmark datasets, including static types of features extracted from applications. This paper studies FS methods used in traditional android malware detection systems. These FS methods are implemented on the benchmark datasets such as Genome project, Google PlayStore, AndroZoo, and Drebin consist of static types of extracted features from applications. These traditional methods are studied and implemented on the latest dataset, such as CIC-MalDroid2020 dataset, which includes the latest types of malware and 470 dynamic types of features. The experimentation is performed on CIC-MalDroid2020 dataset with the Random Forest (RF) classifier using traditional FS methods, and performance is compared with the original feature set. Finally, the investigation with the RF classifier on CIC-MalDroid2020 dataset using the obtained 80 features from 470 original features by the ReliefF method produces higher precision of 97.4647% and a lower FAR of 0.1409 for malware detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信