稀土在氟磷灰石特征位点的取代机理:实验和计算

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
Jun Xie
{"title":"稀土在氟磷灰石特征位点的取代机理:实验和计算","authors":"Jun Xie","doi":"10.37190/ppmp/163418","DOIUrl":null,"url":null,"abstract":"Rare earths (REs) containing phosphate rock is a potential REs resource. The unclear occurrence mechanism of REs in phosphorite limits its further development and utilization. Fluorapatite (FAP) is the main REs-bearing target mineral in phosphorite, the microscopic mechanism of REs entering FAP still needs to be further studied from the electronic scale. In this paper, the doping mechanism of REs in FAP was studied by experiment combined with GGA+U calculation. The XRD, SEM, and FT-IR characterization results of hydrothermal synthesis products showed that REs (La, Ce, Nd, and Y) entered FAP crystal, and one of every 20 Ca atoms was replaced by a REs atom. The GGA+U calculation indicated that La-O/F, Ce-O/F, Nd-O/F, and Y-O/F were ionic bonds in general, and the bonding strength of La-O/F, Ce-O/F, Nd-O/F, and Y-O/F increased gradually with atomic number. The substitution difference of La, Ce, Nd, and Y was mainly caused by the gain and loss of electrons in f and d orbitals. The substitution mechanism of REs at the characteristic sites of Fap was studied, which provided a theoretical reference for the selective recovery of REs from phosphorus blocks.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Substitution mechanism of rare earths at fluorapatite characteristic sites: experimental and computational calculations\",\"authors\":\"Jun Xie\",\"doi\":\"10.37190/ppmp/163418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare earths (REs) containing phosphate rock is a potential REs resource. The unclear occurrence mechanism of REs in phosphorite limits its further development and utilization. Fluorapatite (FAP) is the main REs-bearing target mineral in phosphorite, the microscopic mechanism of REs entering FAP still needs to be further studied from the electronic scale. In this paper, the doping mechanism of REs in FAP was studied by experiment combined with GGA+U calculation. The XRD, SEM, and FT-IR characterization results of hydrothermal synthesis products showed that REs (La, Ce, Nd, and Y) entered FAP crystal, and one of every 20 Ca atoms was replaced by a REs atom. The GGA+U calculation indicated that La-O/F, Ce-O/F, Nd-O/F, and Y-O/F were ionic bonds in general, and the bonding strength of La-O/F, Ce-O/F, Nd-O/F, and Y-O/F increased gradually with atomic number. The substitution difference of La, Ce, Nd, and Y was mainly caused by the gain and loss of electrons in f and d orbitals. The substitution mechanism of REs at the characteristic sites of Fap was studied, which provided a theoretical reference for the selective recovery of REs from phosphorus blocks.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/163418\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/163418","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

含稀土磷酸盐岩是一种潜在的稀土资源。稀土在磷矿中的赋存机制尚不清楚,限制了其进一步的开发利用。氟磷灰石(FAP)是磷矿中主要含稀土的靶矿物,稀土进入FAP的微观机制还有待从电子天平上进一步研究。本文通过实验结合GGA+U计算,研究了RE在FAP中的掺杂机理。水热合成产物的XRD、SEM和FT-IR表征结果表明,RE(La、Ce、Nd和Y)进入FAP晶体,每20个Ca原子中就有一个被RE原子取代。GGA+U计算表明,La-O/F、Ce-O/F,Nd-O/F和Y-O/F通常是离子键,La-O/F,Ce-O/F、Nd-O/F和Y-O-F的键强度随着原子序数的增加而逐渐增加。La、Ce、Nd和Y的取代差异主要是由f和d轨道中电子的增益和损耗引起的。研究了稀土在磷块特征位点的取代机理,为磷块中稀土的选择性回收提供了理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substitution mechanism of rare earths at fluorapatite characteristic sites: experimental and computational calculations
Rare earths (REs) containing phosphate rock is a potential REs resource. The unclear occurrence mechanism of REs in phosphorite limits its further development and utilization. Fluorapatite (FAP) is the main REs-bearing target mineral in phosphorite, the microscopic mechanism of REs entering FAP still needs to be further studied from the electronic scale. In this paper, the doping mechanism of REs in FAP was studied by experiment combined with GGA+U calculation. The XRD, SEM, and FT-IR characterization results of hydrothermal synthesis products showed that REs (La, Ce, Nd, and Y) entered FAP crystal, and one of every 20 Ca atoms was replaced by a REs atom. The GGA+U calculation indicated that La-O/F, Ce-O/F, Nd-O/F, and Y-O/F were ionic bonds in general, and the bonding strength of La-O/F, Ce-O/F, Nd-O/F, and Y-O/F increased gradually with atomic number. The substitution difference of La, Ce, Nd, and Y was mainly caused by the gain and loss of electrons in f and d orbitals. The substitution mechanism of REs at the characteristic sites of Fap was studied, which provided a theoretical reference for the selective recovery of REs from phosphorus blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信