精准农业中玉米玉米螟分类的预测模型

Ezeofor J. Chukwunazo, Akpado Kenneth, Ulasi Afamefuna
{"title":"精准农业中玉米玉米螟分类的预测模型","authors":"Ezeofor J. Chukwunazo, Akpado Kenneth, Ulasi Afamefuna","doi":"10.5121/ijaia.2021.12403","DOIUrl":null,"url":null,"abstract":"This paper presents Predictive Model for Stem Borers’ classification in Precision Farming. The recent announcement of the aggressive attack of stem borers (Spodoptera species) to maize crops in Africa is alarming. These species migrate in large numbers and feed on maize leaf, stem, and ear of corn. The male of these species are the target because after mating with their female counterpart, thousands of eggs are laid which produces larvae that create the havoc. Currently, Nigerian farmers find it difficult to distinguish between these targeted species (Fall Armyworm-FAW, African Armyworm-AAW and Egyptian cotton leaf worm-ECLW only) because they look alike in appearance. For these reasons, the network model that would predict the presence of these species in the maize farm to farmers is proposed. The maize species were captured using delta pheromone traps and laboratory breeding for each category. The captured images were pre-processed and stored in an online Google drive image dataset folder created. The convolutional neural network (CNN) model for classifying these targeted maize moths was designed from the scratch. The Google Colab platform with Python libraries was used to train the model called MothNet. The images of the FAW, AAW, and ECLW were inputted to the designed MothNet model during learning process. Dropout and data augmentation were added to the architecture of the model for an efficient prediction. After training the MothNet model, the validation accuracy achieved was 90.37% with validation loss of 24.72%, and training accuracy 90.8% with loss of 23.25%, and the training occurred within 5minutes 33seconds. Due to the small amount of images gathered (1674), the model prediction on each image was of low confident. Because of this, transfer learning was deployed and Resnet 50 pretrained model selected and modified. The modified ResNet-50 model was fine-tuned and tested. The model validation accuracy achieved was 99.21%, loss of 3.79%, and training accuracy of 99.75% with loss of 2.55% within 10mins 5 seconds. Hence, MothNet model can be improved on by gathering more images and retraining the system for optimum performance while modified ResNet 50 is recommended to be integrated in Internet of Things device for maize moths’ classification on-site.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Model for Maize Stem Borers’ Classification in Precision Farming\",\"authors\":\"Ezeofor J. Chukwunazo, Akpado Kenneth, Ulasi Afamefuna\",\"doi\":\"10.5121/ijaia.2021.12403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Predictive Model for Stem Borers’ classification in Precision Farming. The recent announcement of the aggressive attack of stem borers (Spodoptera species) to maize crops in Africa is alarming. These species migrate in large numbers and feed on maize leaf, stem, and ear of corn. The male of these species are the target because after mating with their female counterpart, thousands of eggs are laid which produces larvae that create the havoc. Currently, Nigerian farmers find it difficult to distinguish between these targeted species (Fall Armyworm-FAW, African Armyworm-AAW and Egyptian cotton leaf worm-ECLW only) because they look alike in appearance. For these reasons, the network model that would predict the presence of these species in the maize farm to farmers is proposed. The maize species were captured using delta pheromone traps and laboratory breeding for each category. The captured images were pre-processed and stored in an online Google drive image dataset folder created. The convolutional neural network (CNN) model for classifying these targeted maize moths was designed from the scratch. The Google Colab platform with Python libraries was used to train the model called MothNet. The images of the FAW, AAW, and ECLW were inputted to the designed MothNet model during learning process. Dropout and data augmentation were added to the architecture of the model for an efficient prediction. After training the MothNet model, the validation accuracy achieved was 90.37% with validation loss of 24.72%, and training accuracy 90.8% with loss of 23.25%, and the training occurred within 5minutes 33seconds. Due to the small amount of images gathered (1674), the model prediction on each image was of low confident. Because of this, transfer learning was deployed and Resnet 50 pretrained model selected and modified. The modified ResNet-50 model was fine-tuned and tested. The model validation accuracy achieved was 99.21%, loss of 3.79%, and training accuracy of 99.75% with loss of 2.55% within 10mins 5 seconds. Hence, MothNet model can be improved on by gathering more images and retraining the system for optimum performance while modified ResNet 50 is recommended to be integrated in Internet of Things device for maize moths’ classification on-site.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2021.12403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2021.12403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种适用于精准农业中钻茎害虫分类的预测模型。最近宣布,非洲玉米作物受到夜蛾的攻击,这令人担忧。这些物种大量迁徙,以玉米的叶、茎和穗为食。这些物种中的雄性是目标,因为在与雌性交配后,会产下数千枚卵子,产生造成严重破坏的幼虫。目前,尼日利亚农民发现很难区分这些目标物种(仅限秋粘虫FAW、非洲粘虫AAW和埃及棉叶虫ECLW),因为它们在外观上很相似。出于这些原因,提出了一个网络模型,可以向农民预测玉米农场中这些物种的存在。使用德尔塔信息素诱捕器和每一类的实验室育种捕获玉米物种。捕获的图像经过预处理并存储在创建的在线谷歌驱动器图像数据集文件夹中。用于对这些目标玉米蛾进行分类的卷积神经网络(CNN)模型是从头开始设计的。带有Python库的GoogleColab平台被用来训练名为MothNet的模型。在学习过程中,FAW、AAW和ECLW的图像被输入到设计的MothNet模型中。为了进行有效的预测,在模型的架构中添加了丢弃和数据扩充。训练MothNet模型后,实现的验证准确率为90.37%,验证损失为24.72%,训练准确率为90.0%,损失为23.25%,训练时间为5分33秒。由于收集的图像数量较少(1674),对每个图像的模型预测可信度较低。因此,部署了迁移学习,并选择和修改了Resnet 50预训练模型。对修改后的ResNet-50模型进行了微调和测试。在10分5秒内,实现的模型验证准确率为99.21%,损失3.79%,训练准确率为99.55%,损失2.55%。因此,可以通过收集更多的图像和重新训练系统以获得最佳性能来改进MothNet模型,而建议将改进的ResNet50集成到物联网设备中,用于玉米蛾的现场分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Model for Maize Stem Borers’ Classification in Precision Farming
This paper presents Predictive Model for Stem Borers’ classification in Precision Farming. The recent announcement of the aggressive attack of stem borers (Spodoptera species) to maize crops in Africa is alarming. These species migrate in large numbers and feed on maize leaf, stem, and ear of corn. The male of these species are the target because after mating with their female counterpart, thousands of eggs are laid which produces larvae that create the havoc. Currently, Nigerian farmers find it difficult to distinguish between these targeted species (Fall Armyworm-FAW, African Armyworm-AAW and Egyptian cotton leaf worm-ECLW only) because they look alike in appearance. For these reasons, the network model that would predict the presence of these species in the maize farm to farmers is proposed. The maize species were captured using delta pheromone traps and laboratory breeding for each category. The captured images were pre-processed and stored in an online Google drive image dataset folder created. The convolutional neural network (CNN) model for classifying these targeted maize moths was designed from the scratch. The Google Colab platform with Python libraries was used to train the model called MothNet. The images of the FAW, AAW, and ECLW were inputted to the designed MothNet model during learning process. Dropout and data augmentation were added to the architecture of the model for an efficient prediction. After training the MothNet model, the validation accuracy achieved was 90.37% with validation loss of 24.72%, and training accuracy 90.8% with loss of 23.25%, and the training occurred within 5minutes 33seconds. Due to the small amount of images gathered (1674), the model prediction on each image was of low confident. Because of this, transfer learning was deployed and Resnet 50 pretrained model selected and modified. The modified ResNet-50 model was fine-tuned and tested. The model validation accuracy achieved was 99.21%, loss of 3.79%, and training accuracy of 99.75% with loss of 2.55% within 10mins 5 seconds. Hence, MothNet model can be improved on by gathering more images and retraining the system for optimum performance while modified ResNet 50 is recommended to be integrated in Internet of Things device for maize moths’ classification on-site.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信