Kirk E. Turner , Andrew Thompson , Ian Harris , Mark Ferguson , Ferdous Sohel
{"title":"基于深度学习的不平衡加速度计数据羊行为分类","authors":"Kirk E. Turner , Andrew Thompson , Ian Harris , Mark Ferguson , Ferdous Sohel","doi":"10.1016/j.inpa.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management. Sheep behaviour is inherently imbalanced (e.g., more <em>ruminating</em> than <em>walking</em>) resulting in underperforming classification for the minority activities which hold importance. Existing works have not addressed class imbalance and use traditional machine learning techniques, e.g., Random Forest (RF). We investigated Deep Learning (DL) models, namely, Long Short Term Memory (LSTM) and Bidirectional LSTM (BLSTM), appropriate for sequential data, from imbalanced data. Two data sets were collected in normal grazing conditions using jaw-mounted and ear-mounted sensors. Novel to this study, alongside typical single classes, e.g., <em>walking</em>, depending on the behaviours, data samples were labelled with compound classes, e.g., <em>walking_grazing</em>. The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models. We designed several multi-class classification studies with imbalance being addressed using synthetic data. DL models achieved superior performance to traditional ML models, especially with augmented data (e.g., 4-Class + Steps: LSTM 88.0%, RF 82.5%). DL methods showed superior generalisability on unseen sheep (i.e., F1-score: BLSTM 0.84, LSTM 0.83, RF 0.65). LSTM, BLSTM and RF achieved sub-millisecond average inference time, making them suitable for real-time applications. The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions. The results also demonstrate the DL techniques can generalise across different sheep. The study presents a strong foundation of the development of such models for real-time animal monitoring.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 377-390"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep learning based classification of sheep behaviour from accelerometer data with imbalance\",\"authors\":\"Kirk E. Turner , Andrew Thompson , Ian Harris , Mark Ferguson , Ferdous Sohel\",\"doi\":\"10.1016/j.inpa.2022.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management. Sheep behaviour is inherently imbalanced (e.g., more <em>ruminating</em> than <em>walking</em>) resulting in underperforming classification for the minority activities which hold importance. Existing works have not addressed class imbalance and use traditional machine learning techniques, e.g., Random Forest (RF). We investigated Deep Learning (DL) models, namely, Long Short Term Memory (LSTM) and Bidirectional LSTM (BLSTM), appropriate for sequential data, from imbalanced data. Two data sets were collected in normal grazing conditions using jaw-mounted and ear-mounted sensors. Novel to this study, alongside typical single classes, e.g., <em>walking</em>, depending on the behaviours, data samples were labelled with compound classes, e.g., <em>walking_grazing</em>. The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models. We designed several multi-class classification studies with imbalance being addressed using synthetic data. DL models achieved superior performance to traditional ML models, especially with augmented data (e.g., 4-Class + Steps: LSTM 88.0%, RF 82.5%). DL methods showed superior generalisability on unseen sheep (i.e., F1-score: BLSTM 0.84, LSTM 0.83, RF 0.65). LSTM, BLSTM and RF achieved sub-millisecond average inference time, making them suitable for real-time applications. The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions. The results also demonstrate the DL techniques can generalise across different sheep. The study presents a strong foundation of the development of such models for real-time animal monitoring.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 3\",\"pages\":\"Pages 377-390\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317322000415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep learning based classification of sheep behaviour from accelerometer data with imbalance
Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the potential to enhance sheep management. Sheep behaviour is inherently imbalanced (e.g., more ruminating than walking) resulting in underperforming classification for the minority activities which hold importance. Existing works have not addressed class imbalance and use traditional machine learning techniques, e.g., Random Forest (RF). We investigated Deep Learning (DL) models, namely, Long Short Term Memory (LSTM) and Bidirectional LSTM (BLSTM), appropriate for sequential data, from imbalanced data. Two data sets were collected in normal grazing conditions using jaw-mounted and ear-mounted sensors. Novel to this study, alongside typical single classes, e.g., walking, depending on the behaviours, data samples were labelled with compound classes, e.g., walking_grazing. The number of steps a sheep performed in the observed 10 s time window was also recorded and incorporated in the models. We designed several multi-class classification studies with imbalance being addressed using synthetic data. DL models achieved superior performance to traditional ML models, especially with augmented data (e.g., 4-Class + Steps: LSTM 88.0%, RF 82.5%). DL methods showed superior generalisability on unseen sheep (i.e., F1-score: BLSTM 0.84, LSTM 0.83, RF 0.65). LSTM, BLSTM and RF achieved sub-millisecond average inference time, making them suitable for real-time applications. The results demonstrate the effectiveness of DL models for sheep behaviour classification in grazing conditions. The results also demonstrate the DL techniques can generalise across different sheep. The study presents a strong foundation of the development of such models for real-time animal monitoring.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining