辛变形模型中扭结的真空极化能

IF 1.4 Q3 PHYSICS, MULTIDISCIPLINARY
I. Takyi, B. Barnes, J. Ackora-Prah
{"title":"辛变形模型中扭结的真空极化能","authors":"I. Takyi, B. Barnes, J. Ackora-Prah","doi":"10.3906/fiz-2103-32","DOIUrl":null,"url":null,"abstract":"We compute the one-loop quantum corrections to the kink energies of the sinh-deformed $\\phi^{4}$ and $\\varphi^{6}$ models in one space and one time dimensions. These models are constructed from the well-known polynomial $\\phi^{4}$ and $\\varphi^{6}$ models by a deformation procedure. We also compute the vacuum polarization energy to the non-polynomial function $U(\\phi)=\\frac{1}{4}(1-\\sinh^{2}\\phi)^{2}$. This potential approaches the $\\phi^{4}$ model in the limit of small values of the scalar function. These energies are extracted from scattering data for fluctuations about the kink solutions. We show that for certain topological sectors with non-equivalent vacua the kink solutions of the sinh-deformed models are destabilized.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vacuum polarization energy of the kinks in the sinh-deformed models\",\"authors\":\"I. Takyi, B. Barnes, J. Ackora-Prah\",\"doi\":\"10.3906/fiz-2103-32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the one-loop quantum corrections to the kink energies of the sinh-deformed $\\\\phi^{4}$ and $\\\\varphi^{6}$ models in one space and one time dimensions. These models are constructed from the well-known polynomial $\\\\phi^{4}$ and $\\\\varphi^{6}$ models by a deformation procedure. We also compute the vacuum polarization energy to the non-polynomial function $U(\\\\phi)=\\\\frac{1}{4}(1-\\\\sinh^{2}\\\\phi)^{2}$. This potential approaches the $\\\\phi^{4}$ model in the limit of small values of the scalar function. These energies are extracted from scattering data for fluctuations about the kink solutions. We show that for certain topological sectors with non-equivalent vacua the kink solutions of the sinh-deformed models are destabilized.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3906/fiz-2103-32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-2103-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

我们计算了在一个空间和一个时间维度上sinh变形$\phi^{4}$和$\varphi^{6}$模型的扭结能量的单环量子修正。这些模型由众所周知的多项式$\phi^{4}$和$\varphi^{6}$模型通过变形过程构造而成。我们还计算了真空极化能的非多项式函数$U(\phi)=\frac{1}{4}(1-\sinh^{2}\phi)^{2}$。这个势在标量函数的小值极限中接近$\phi^{4}$模型。这些能量是从扭结解波动的散射数据中提取的。我们证明了对于具有非等效真空的某些拓扑扇区,辛变形模型的扭结解是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacuum polarization energy of the kinks in the sinh-deformed models
We compute the one-loop quantum corrections to the kink energies of the sinh-deformed $\phi^{4}$ and $\varphi^{6}$ models in one space and one time dimensions. These models are constructed from the well-known polynomial $\phi^{4}$ and $\varphi^{6}$ models by a deformation procedure. We also compute the vacuum polarization energy to the non-polynomial function $U(\phi)=\frac{1}{4}(1-\sinh^{2}\phi)^{2}$. This potential approaches the $\phi^{4}$ model in the limit of small values of the scalar function. These energies are extracted from scattering data for fluctuations about the kink solutions. We show that for certain topological sectors with non-equivalent vacua the kink solutions of the sinh-deformed models are destabilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Physics
Turkish Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
0.00%
发文量
8
期刊介绍: The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信