{"title":"极小型GL(2)上自同构形式的一些解析方面","authors":"Yueke Hu, Paul D. Nelson, A. Saha","doi":"10.4171/cmh/473","DOIUrl":null,"url":null,"abstract":"Let $\\pi$ be a cuspidal automorphic representation of $PGL_2(\\mathbb{A}_\\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\\phi$ be an $L^2$-normalized automorphic form in the space of $\\pi$. The sup-norm problem asks for bounds on $\\| \\phi \\|_\\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\\phi|^2 (g) \\, d g$ of $\\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\\phi$ is a newform. \nIn this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\\phi$ for which the local components $\\phi_p \\in \\pi_p$ are \"minimal\" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\\mathbb{R})$. \nFor automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\\pi_\\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\\epsilon} k^{1/4 - \\epsilon} \\ll_{\\epsilon} |\\phi|_\\infty \\ll_{\\epsilon} C^{1/8 + \\epsilon} k^{1/4+\\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Some analytic aspects of automorphic forms on GL(2) of minimal type\",\"authors\":\"Yueke Hu, Paul D. Nelson, A. Saha\",\"doi\":\"10.4171/cmh/473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\pi$ be a cuspidal automorphic representation of $PGL_2(\\\\mathbb{A}_\\\\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\\\\phi$ be an $L^2$-normalized automorphic form in the space of $\\\\pi$. The sup-norm problem asks for bounds on $\\\\| \\\\phi \\\\|_\\\\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\\\\phi|^2 (g) \\\\, d g$ of $\\\\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\\\\phi$ is a newform. \\nIn this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\\\\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\\\\phi$ for which the local components $\\\\phi_p \\\\in \\\\pi_p$ are \\\"minimal\\\" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\\\\mathbb{R})$. \\nFor automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\\\\pi_\\\\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\\\\epsilon} k^{1/4 - \\\\epsilon} \\\\ll_{\\\\epsilon} |\\\\phi|_\\\\infty \\\\ll_{\\\\epsilon} C^{1/8 + \\\\epsilon} k^{1/4+\\\\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/473\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/473","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some analytic aspects of automorphic forms on GL(2) of minimal type
Let $\pi$ be a cuspidal automorphic representation of $PGL_2(\mathbb{A}_\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\phi$ be an $L^2$-normalized automorphic form in the space of $\pi$. The sup-norm problem asks for bounds on $\| \phi \|_\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\phi|^2 (g) \, d g$ of $\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\phi$ is a newform.
In this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\phi$ for which the local components $\phi_p \in \pi_p$ are "minimal" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\mathbb{R})$.
For automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\pi_\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\epsilon} k^{1/4 - \epsilon} \ll_{\epsilon} |\phi|_\infty \ll_{\epsilon} C^{1/8 + \epsilon} k^{1/4+\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.