极小型GL(2)上自同构形式的一些解析方面

IF 1.1 3区 数学 Q1 MATHEMATICS
Yueke Hu, Paul D. Nelson, A. Saha
{"title":"极小型GL(2)上自同构形式的一些解析方面","authors":"Yueke Hu, Paul D. Nelson, A. Saha","doi":"10.4171/cmh/473","DOIUrl":null,"url":null,"abstract":"Let $\\pi$ be a cuspidal automorphic representation of $PGL_2(\\mathbb{A}_\\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\\phi$ be an $L^2$-normalized automorphic form in the space of $\\pi$. The sup-norm problem asks for bounds on $\\| \\phi \\|_\\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\\phi|^2 (g) \\, d g$ of $\\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\\phi$ is a newform. \nIn this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\\phi$ for which the local components $\\phi_p \\in \\pi_p$ are \"minimal\" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\\mathbb{R})$. \nFor automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\\pi_\\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\\epsilon} k^{1/4 - \\epsilon} \\ll_{\\epsilon} |\\phi|_\\infty \\ll_{\\epsilon} C^{1/8 + \\epsilon} k^{1/4+\\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Some analytic aspects of automorphic forms on GL(2) of minimal type\",\"authors\":\"Yueke Hu, Paul D. Nelson, A. Saha\",\"doi\":\"10.4171/cmh/473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\pi$ be a cuspidal automorphic representation of $PGL_2(\\\\mathbb{A}_\\\\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\\\\phi$ be an $L^2$-normalized automorphic form in the space of $\\\\pi$. The sup-norm problem asks for bounds on $\\\\| \\\\phi \\\\|_\\\\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\\\\phi|^2 (g) \\\\, d g$ of $\\\\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\\\\phi$ is a newform. \\nIn this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\\\\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\\\\phi$ for which the local components $\\\\phi_p \\\\in \\\\pi_p$ are \\\"minimal\\\" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\\\\mathbb{R})$. \\nFor automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\\\\pi_\\\\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\\\\epsilon} k^{1/4 - \\\\epsilon} \\\\ll_{\\\\epsilon} |\\\\phi|_\\\\infty \\\\ll_{\\\\epsilon} C^{1/8 + \\\\epsilon} k^{1/4+\\\\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/473\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/473","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

设$\pi$是$PGL_2(\mathbb{A}_\mathb{Q})$和阿基米德参数$T$,并使$\pi$是$\pi$空间中的$L^2$归一化自同构形式。超范数问题用$C$和$T$求$\|\phi\|_\infty$的界。量子唯一遍历性(QUE)问题涉及$L^2$-质量$|\phi|^2(g)\,dg$\phi$的极限行为。以前在导体方面关于这些问题的所有工作都集中在$\phi$是一种新形式的情况下。在这项工作中,我们研究了一类非新形式的自同构形式的这些问题。准确地说,我们假设对于$C$的每一个素数$p$,局部分量$\pi_p$是超uspial的(并满足一些附加的技术假设),并考虑自同构形式$\phi$,其中局部分量$\pi_p\in\pi_p@是“最小”向量。这样的向量可以被理解为$PGL_2(\mathbb{R})$的全纯离散级数表示中的最低权重向量的非阿基米德类似物。对于如上所述的自同构形式,我们证明了一个比newform情况下已知的更尖锐的超范数界。特别地,如果$\pi_\infty$是最低权重$k$的全纯离散级数,我们得到了最优界$C^{1/8-\epsilon}k^{1/4-\epsilon}\ll_{\epsilon}|\phi|_\infty\ll_{\epsilon}C^{1/8+\epsilon}k^{1/4+\epsilion}$。我们还证明了这些形式给出了QUE周期的分析测试向量,从而证明了这类向量的强QUE问题和次凸问题之间的等价性。这一发现对比了这种强大级别的新形式的等价性的已知失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some analytic aspects of automorphic forms on GL(2) of minimal type
Let $\pi$ be a cuspidal automorphic representation of $PGL_2(\mathbb{A}_\mathbb{Q})$ of arithmetic conductor $C$ and archimedean parameter $T$, and let $\phi$ be an $L^2$-normalized automorphic form in the space of $\pi$. The sup-norm problem asks for bounds on $\| \phi \|_\infty$ in terms of $C$ and $T$. The quantum unique ergodicity (QUE) problem concerns the limiting behavior of the $L^2$-mass $|\phi|^2 (g) \, d g$ of $\phi$. All previous work on these problems in the conductor-aspect has focused on the case that $\phi$ is a newform. In this work, we study these problems for a class of automorphic forms that are not newforms. Precisely, we assume that for each prime divisor $p$ of $C$, the local component $\pi_p$ is supercuspidal (and satisfies some additional technical hypotheses), and consider automorphic forms $\phi$ for which the local components $\phi_p \in \pi_p$ are "minimal" vectors. Such vectors may be understood as non-archimedean analogues of lowest weight vectors in holomorphic discrete series representations of $PGL_2(\mathbb{R})$. For automorphic forms as above, we prove a sup-norm bound that is sharper than what is known in the newform case. In particular, if $\pi_\infty$ is a holomorphic discrete series of lowest weight $k$, we obtain the optimal bound $C^{1/8 -\epsilon} k^{1/4 - \epsilon} \ll_{\epsilon} |\phi|_\infty \ll_{\epsilon} C^{1/8 + \epsilon} k^{1/4+\epsilon}$. We prove also that these forms give analytic test vectors for the QUE period, thereby demonstrating the equivalence between the strong QUE and the subconvexity problems for this class of vectors. This finding contrasts the known failure of this equivalence for newforms of powerful level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信