B. Basilia, Sharyjel R. Cayabyab, E. Casa, A. K. Collera, P. A. D. De Yro, M. Margarito, Lumen Milo, Mat Christian Que, Vivian Lagura, Brigida A. Visaya
{"title":"增强亲水性的纳米聚砜-纳米粘土复合膜的研制","authors":"B. Basilia, Sharyjel R. Cayabyab, E. Casa, A. K. Collera, P. A. D. De Yro, M. Margarito, Lumen Milo, Mat Christian Que, Vivian Lagura, Brigida A. Visaya","doi":"10.47125/jesam/2020_sp1/04","DOIUrl":null,"url":null,"abstract":"This research involved the development of membranes with local raw materials to suit water and wastewater treatment applications. Indigenous montmorillonite clay was surface modified with dialkyldimethyl ammonium chloride to be used as functional additive in polymeric membranes. Polysulfone (PSf) pellets were dissolved in N-methyl-pyrrolidone (NMP) and organomodified-montmorillonite (OMMT) or nanoclay was incorporated at varying concentrations up to 1.00%. Casting solutions were vacuum-mixed and degassed using a planetary mixer then casted using MEMCAST™ to produce flat sheet membranes. Characterizations include X-Ray Diffractometry, Atomic Force Microscopy, Scanning Electron Microscopy, and contact angle measurement. The exfoliation of OMMT platelet structures within the PSf matrix at 1.00% loading showed improved surface roughness and more porous morphology. Improved surface roughness was observed with an increasing value as a function of increasing OMMT concentration. Meanwhile, the morphology of the nanocomposite membranes showed three distinct layers: dense skin layer, porous finger-like layer, and sponge-like structured layer. Moreover, the contact angle of the membranes decreased by 13.7% with 1.00% addition. This enhancement in hydrophilicity could affect properties like permeate flux and membrane fouling, which could play an important role in the functional performance of synthesized membranes with nanoclay additives. One-way ANOVA revealed that the change in OMMT concentration has significant effect on the surface roughness and contact angles of the membranes at 95% confidence level.","PeriodicalId":15657,"journal":{"name":"Journal of Environmental Science and Management","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Nanocomposite Polysulfone- Nanoclay Membrane with Enhanced Hydrophilicity\",\"authors\":\"B. Basilia, Sharyjel R. Cayabyab, E. Casa, A. K. Collera, P. A. D. De Yro, M. Margarito, Lumen Milo, Mat Christian Que, Vivian Lagura, Brigida A. Visaya\",\"doi\":\"10.47125/jesam/2020_sp1/04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research involved the development of membranes with local raw materials to suit water and wastewater treatment applications. Indigenous montmorillonite clay was surface modified with dialkyldimethyl ammonium chloride to be used as functional additive in polymeric membranes. Polysulfone (PSf) pellets were dissolved in N-methyl-pyrrolidone (NMP) and organomodified-montmorillonite (OMMT) or nanoclay was incorporated at varying concentrations up to 1.00%. Casting solutions were vacuum-mixed and degassed using a planetary mixer then casted using MEMCAST™ to produce flat sheet membranes. Characterizations include X-Ray Diffractometry, Atomic Force Microscopy, Scanning Electron Microscopy, and contact angle measurement. The exfoliation of OMMT platelet structures within the PSf matrix at 1.00% loading showed improved surface roughness and more porous morphology. Improved surface roughness was observed with an increasing value as a function of increasing OMMT concentration. Meanwhile, the morphology of the nanocomposite membranes showed three distinct layers: dense skin layer, porous finger-like layer, and sponge-like structured layer. Moreover, the contact angle of the membranes decreased by 13.7% with 1.00% addition. This enhancement in hydrophilicity could affect properties like permeate flux and membrane fouling, which could play an important role in the functional performance of synthesized membranes with nanoclay additives. One-way ANOVA revealed that the change in OMMT concentration has significant effect on the surface roughness and contact angles of the membranes at 95% confidence level.\",\"PeriodicalId\":15657,\"journal\":{\"name\":\"Journal of Environmental Science and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.47125/jesam/2020_sp1/04\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.47125/jesam/2020_sp1/04","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Development of Nanocomposite Polysulfone- Nanoclay Membrane with Enhanced Hydrophilicity
This research involved the development of membranes with local raw materials to suit water and wastewater treatment applications. Indigenous montmorillonite clay was surface modified with dialkyldimethyl ammonium chloride to be used as functional additive in polymeric membranes. Polysulfone (PSf) pellets were dissolved in N-methyl-pyrrolidone (NMP) and organomodified-montmorillonite (OMMT) or nanoclay was incorporated at varying concentrations up to 1.00%. Casting solutions were vacuum-mixed and degassed using a planetary mixer then casted using MEMCAST™ to produce flat sheet membranes. Characterizations include X-Ray Diffractometry, Atomic Force Microscopy, Scanning Electron Microscopy, and contact angle measurement. The exfoliation of OMMT platelet structures within the PSf matrix at 1.00% loading showed improved surface roughness and more porous morphology. Improved surface roughness was observed with an increasing value as a function of increasing OMMT concentration. Meanwhile, the morphology of the nanocomposite membranes showed three distinct layers: dense skin layer, porous finger-like layer, and sponge-like structured layer. Moreover, the contact angle of the membranes decreased by 13.7% with 1.00% addition. This enhancement in hydrophilicity could affect properties like permeate flux and membrane fouling, which could play an important role in the functional performance of synthesized membranes with nanoclay additives. One-way ANOVA revealed that the change in OMMT concentration has significant effect on the surface roughness and contact angles of the membranes at 95% confidence level.
期刊介绍:
The Journal of Environmental Science and Management (JESAM) is an international scientific journal produced semi-annually by the University of the Philippines Los Baños (UPLB).
JESAM gives particular premium to manuscript submissions that employ integrated methods resulting to analyses that provide new insights in environmental science, particularly in the areas of:
environmental planning and management;
protected areas development, planning, and management;
community-based resources management;
environmental chemistry and toxicology;
environmental restoration;
social theory and environment; and
environmental security and management.