凸域的Fuglede猜想在所有维度上都是正确的

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nir Lev, M. Matolcsi
{"title":"凸域的Fuglede猜想在所有维度上都是正确的","authors":"Nir Lev, M. Matolcsi","doi":"10.4310/ACTA.2022.v228.n2.a3","DOIUrl":null,"url":null,"abstract":"A set $\\Omega \\subset \\mathbb{R}^d$ is said to be spectral if the space $L^2(\\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body $\\Omega \\subset \\mathbb{R}^d$ the \"tiling implies spectral\" part of the conjecture is in fact true. \nTo the contrary, the \"spectral implies tiling\" direction of the conjecture for convex bodies was proved only in $\\mathbb{R}^2$, and also in $\\mathbb{R}^3$ under the a priori assumption that $\\Omega$ is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when $\\Omega$ is a polytope) and could not be treated using the previously developed techniques. \nIn this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body $\\Omega \\subset \\mathbb{R}^d$ is a spectral set then it can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric \"weak tiling\" condition necessary for a set $\\Omega \\subset \\mathbb{R}^d$ to be spectral.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"The Fuglede conjecture for convex domains is true in all dimensions\",\"authors\":\"Nir Lev, M. Matolcsi\",\"doi\":\"10.4310/ACTA.2022.v228.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set $\\\\Omega \\\\subset \\\\mathbb{R}^d$ is said to be spectral if the space $L^2(\\\\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\\\\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body $\\\\Omega \\\\subset \\\\mathbb{R}^d$ the \\\"tiling implies spectral\\\" part of the conjecture is in fact true. \\nTo the contrary, the \\\"spectral implies tiling\\\" direction of the conjecture for convex bodies was proved only in $\\\\mathbb{R}^2$, and also in $\\\\mathbb{R}^3$ under the a priori assumption that $\\\\Omega$ is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when $\\\\Omega$ is a polytope) and could not be treated using the previously developed techniques. \\nIn this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body $\\\\Omega \\\\subset \\\\mathbb{R}^d$ is a spectral set then it can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric \\\"weak tiling\\\" condition necessary for a set $\\\\Omega \\\\subset \\\\mathbb{R}^d$ to be spectral.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2019-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2022.v228.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2022.v228.n2.a3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 44

摘要

如果空间$L^2(\Omega)$具有指数函数的正交基,则称集合$\Omega\subet\mathbb{R}^d$是谱的。Fuglede(1974)的一个猜想指出,$\Omega$是一个谱集,当且仅当它可以通过平移来平铺空间。虽然这一猜想在一般集合中被证明是错误的,但人们早就知道,对于凸体$\Omega\subet\mathbb{R}^d$,该猜想的“平铺意味着光谱”部分实际上是正确的。相反,在$\Omega$是凸多面体的先验假设下,仅在$\mathbb{R}^2$中证明了凸体猜想的“谱暗示平铺”方向,并且在$\math bb{R}^3$中也证明了这一方向。在更高的维度中,这个猜想的方向仍然是完全开放的(即使在$\Omega$是多面体的情况下),并且不能使用以前开发的技术来处理。在本文中,我们完全肯定地解决了Fuglede关于所有维度上凸体的猜想,即我们证明了如果凸体$\Omega\subet\mathbb{R}^d$是一个谱集,那么它可以通过平移来平铺空间。为了证明这一点,我们引入了一种新技术,该技术涉及晶体衍射理论的构建,使我们能够建立集合$\Omega\subet\mathbb{R}^d$是光谱的必要几何“弱平铺”条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fuglede conjecture for convex domains is true in all dimensions
A set $\Omega \subset \mathbb{R}^d$ is said to be spectral if the space $L^2(\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body $\Omega \subset \mathbb{R}^d$ the "tiling implies spectral" part of the conjecture is in fact true. To the contrary, the "spectral implies tiling" direction of the conjecture for convex bodies was proved only in $\mathbb{R}^2$, and also in $\mathbb{R}^3$ under the a priori assumption that $\Omega$ is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when $\Omega$ is a polytope) and could not be treated using the previously developed techniques. In this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body $\Omega \subset \mathbb{R}^d$ is a spectral set then it can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric "weak tiling" condition necessary for a set $\Omega \subset \mathbb{R}^d$ to be spectral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信