关于$5D$宇宙的$(1+1+3)$线程的爱因斯坦场方程的分裂

IF 0.4 Q4 MATHEMATICS
A. Bejancu, H. Farran
{"title":"关于$5D$宇宙的$(1+1+3)$线程的爱因斯坦场方程的分裂","authors":"A. Bejancu, H. Farran","doi":"10.36890/IEJG.902162","DOIUrl":null,"url":null,"abstract":"We obtain a new and simple splitting of Einstein field equations with respect to the (1 + 1 + 3) threading of a 5 D universe ( ¯ M, ¯ g ) . The study is based on the spatial tensor fields and on the Riemannian spatial connection, which behave as 3 D geometric objects. All the equations are expressed with respect to the adapted frame field and the adapted coframe field induced by the (1 + 1 + 3) threading of ( ¯ M, ¯ g ) . In particular, we obtain the splitting of the Einstein field equations in a 5 D Robertson-Walker universe.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting of the Einstein Field Equations with Respect to the $(1+1+3)$ Threading of a $5D$ Universe\",\"authors\":\"A. Bejancu, H. Farran\",\"doi\":\"10.36890/IEJG.902162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a new and simple splitting of Einstein field equations with respect to the (1 + 1 + 3) threading of a 5 D universe ( ¯ M, ¯ g ) . The study is based on the spatial tensor fields and on the Riemannian spatial connection, which behave as 3 D geometric objects. All the equations are expressed with respect to the adapted frame field and the adapted coframe field induced by the (1 + 1 + 3) threading of ( ¯ M, ¯ g ) . In particular, we obtain the splitting of the Einstein field equations in a 5 D Robertson-Walker universe.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/IEJG.902162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/IEJG.902162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了关于5维宇宙(M,g)的(1+1+3)线程的爱因斯坦场方程的一个新的简单分裂。该研究基于空间张量场和黎曼空间连接,它们表现为三维几何对象。所有方程都是关于(M,g)的(1+1+3)螺纹引起的适配框架场和适配共框架场来表示的。特别地,我们得到了在5维Robertson-Worker宇宙中爱因斯坦场方程的分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting of the Einstein Field Equations with Respect to the $(1+1+3)$ Threading of a $5D$ Universe
We obtain a new and simple splitting of Einstein field equations with respect to the (1 + 1 + 3) threading of a 5 D universe ( ¯ M, ¯ g ) . The study is based on the spatial tensor fields and on the Riemannian spatial connection, which behave as 3 D geometric objects. All the equations are expressed with respect to the adapted frame field and the adapted coframe field induced by the (1 + 1 + 3) threading of ( ¯ M, ¯ g ) . In particular, we obtain the splitting of the Einstein field equations in a 5 D Robertson-Walker universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信