全质量交叉流的Lelong数

IF 1.7 1区 数学 Q1 MATHEMATICS
Duc-Viet Vu
{"title":"全质量交叉流的Lelong数","authors":"Duc-Viet Vu","doi":"10.1353/ajm.2023.0016","DOIUrl":null,"url":null,"abstract":"We study Lelong numbers of currents of full mass intersection on a compact Kaehler manifold in a mixed setting. Our main theorems cover some recent results due to Darvas-Di Nezza-Lu. One of the key ingredients in our approach is a new notion of products of pseudoeffective classes which captures some \"pluripolar part\" of the \"total intersection\" of given pseudoeffective classes.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lelong numbers of currents of full mass intersection\",\"authors\":\"Duc-Viet Vu\",\"doi\":\"10.1353/ajm.2023.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Lelong numbers of currents of full mass intersection on a compact Kaehler manifold in a mixed setting. Our main theorems cover some recent results due to Darvas-Di Nezza-Lu. One of the key ingredients in our approach is a new notion of products of pseudoeffective classes which captures some \\\"pluripolar part\\\" of the \\\"total intersection\\\" of given pseudoeffective classes.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.0016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.0016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

研究了混合环境下紧化Kaehler流形上满质量交流的Lelong数。我们的主要定理涵盖了Darvas-Di Nezza-Lu最近的一些结果。我们的方法的关键成分之一是伪有效类积的新概念,它捕获了给定伪有效类的“总交集”的某些“多极部分”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lelong numbers of currents of full mass intersection
We study Lelong numbers of currents of full mass intersection on a compact Kaehler manifold in a mixed setting. Our main theorems cover some recent results due to Darvas-Di Nezza-Lu. One of the key ingredients in our approach is a new notion of products of pseudoeffective classes which captures some "pluripolar part" of the "total intersection" of given pseudoeffective classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信