缺陷对金属注射成型β钛合金静态和动态损伤容限的影响

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
P. Xu, T. Ebel, F. Pyczak, R. Willumeit-Römer, Sen Yu
{"title":"缺陷对金属注射成型β钛合金静态和动态损伤容限的影响","authors":"P. Xu, T. Ebel, F. Pyczak, R. Willumeit-Römer, Sen Yu","doi":"10.1080/00325899.2022.2069077","DOIUrl":null,"url":null,"abstract":"ABSTRACT The β titanium alloys are key materials in lightweight and biomedical applications, due to the combination of excellent biocompatibility and mechanical properties. However, the Binder-based Powder Technologies such as Metal-Injection-Molding (MIM), Binder-Jetting and Fused-Filament-Fabrication, normally introduce three major processing-related defects in the as-sintered Ti-parts: (i) residual porosity, (ii) high impurity level and (iii) coarse-grained structure. The previous studies revealed that these processing defects invariably tend to be even more severe in β titanium alloys than in α/β Ti-6Al-4V alloy, all fabricated by powder metallurgical route. In this work, these processing defects and their likely origins in MIM β titanium alloys are analysed. Furthermore, the influence of these defects on damage tolerance and fracture mechanisms of MIM β titanium alloys under either static or dynamic loading is investigated. Based on the studies, strategic technical improvements in the processing to improve the reliability of MIM β titanium alloys products are proposed.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"354 - 364"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of defects on damage tolerance of Metal-Injection-Molded β titanium alloys under static and dynamic loading\",\"authors\":\"P. Xu, T. Ebel, F. Pyczak, R. Willumeit-Römer, Sen Yu\",\"doi\":\"10.1080/00325899.2022.2069077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The β titanium alloys are key materials in lightweight and biomedical applications, due to the combination of excellent biocompatibility and mechanical properties. However, the Binder-based Powder Technologies such as Metal-Injection-Molding (MIM), Binder-Jetting and Fused-Filament-Fabrication, normally introduce three major processing-related defects in the as-sintered Ti-parts: (i) residual porosity, (ii) high impurity level and (iii) coarse-grained structure. The previous studies revealed that these processing defects invariably tend to be even more severe in β titanium alloys than in α/β Ti-6Al-4V alloy, all fabricated by powder metallurgical route. In this work, these processing defects and their likely origins in MIM β titanium alloys are analysed. Furthermore, the influence of these defects on damage tolerance and fracture mechanisms of MIM β titanium alloys under either static or dynamic loading is investigated. Based on the studies, strategic technical improvements in the processing to improve the reliability of MIM β titanium alloys products are proposed.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":\"65 1\",\"pages\":\"354 - 364\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2022.2069077\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2069077","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要β钛合金具有良好的生物相容性和力学性能,是轻量化和生物医学应用的关键材料。然而,基于粘结剂的粉末技术,如金属注射成型(MIM)、粘结剂喷射和熔丝制造,通常会在烧结后的Ti零件中引入三个主要的加工相关缺陷:(i)残余孔隙率,(ii)高杂质水平和(iii)粗粒结构。先前的研究表明,这些加工缺陷在β钛合金中总是比在α/βTi-6Al-4V合金中更严重,所有这些都是通过粉末冶金方法制造的。本文分析了MIMβ钛合金中的这些加工缺陷及其可能的来源。此外,还研究了这些缺陷对MIMβ钛合金在静态或动态载荷下的损伤容限和断裂机制的影响。在此基础上,提出了提高MIMβ钛合金产品可靠性的工艺技术改进策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of defects on damage tolerance of Metal-Injection-Molded β titanium alloys under static and dynamic loading
ABSTRACT The β titanium alloys are key materials in lightweight and biomedical applications, due to the combination of excellent biocompatibility and mechanical properties. However, the Binder-based Powder Technologies such as Metal-Injection-Molding (MIM), Binder-Jetting and Fused-Filament-Fabrication, normally introduce three major processing-related defects in the as-sintered Ti-parts: (i) residual porosity, (ii) high impurity level and (iii) coarse-grained structure. The previous studies revealed that these processing defects invariably tend to be even more severe in β titanium alloys than in α/β Ti-6Al-4V alloy, all fabricated by powder metallurgical route. In this work, these processing defects and their likely origins in MIM β titanium alloys are analysed. Furthermore, the influence of these defects on damage tolerance and fracture mechanisms of MIM β titanium alloys under either static or dynamic loading is investigated. Based on the studies, strategic technical improvements in the processing to improve the reliability of MIM β titanium alloys products are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信