M. Ferguson, R. Angliss, Amy Kennedy, B. Lynch, A. Willoughby, V. Helker, A. Brower, J. Clarke
{"title":"为估计北极鲸目动物密度和相关不确定性而收集视觉数据和图像的载人和无人航空调查的性能","authors":"M. Ferguson, R. Angliss, Amy Kennedy, B. Lynch, A. Willoughby, V. Helker, A. Brower, J. Clarke","doi":"10.1139/JUVS-2018-0002","DOIUrl":null,"url":null,"abstract":"Manned aerial surveys have been used successfully for decades to collect data to infer cetacean distribution, density (number of whales/km2), and abundance. Unmanned aircraft systems (UAS) have potential to augment or replace some manned aerial surveys for cetaceans. We conducted a three-way comparison among visual observations made by marine mammal observers aboard a Turbo Commander aircraft; imagery autonomously collected by a Nikon D810 camera system mounted to a belly port on the Turbo Commander; and imagery collected by a similar camera system on a remotely controlled ScanEagle® UAS operated by the US Navy. Bowhead whale density estimates derived from the marine mammal observer data were higher than those from the Turbo Commander imagery; comparisons to the UAS imagery depended on survey sector and analytical method. Beluga density estimates derived from either dataset collected aboard the Turbo Commander were higher than estimates derived from the UAS imagery. Uncertainties in density estimates derived from the marine mammal observer data were lower than estimates derived from either imagery dataset due to the small sample sizes in the imagery. The visual line-transect aerial survey conducted by marine mammal observers aboard the Turbo Commander was 68.5% of the cost of the photo strip-transect survey aboard the same aircraft and 9.4% of the cost of the UAS survey.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/JUVS-2018-0002","citationCount":"27","resultStr":"{\"title\":\"Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty\",\"authors\":\"M. Ferguson, R. Angliss, Amy Kennedy, B. Lynch, A. Willoughby, V. Helker, A. Brower, J. Clarke\",\"doi\":\"10.1139/JUVS-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manned aerial surveys have been used successfully for decades to collect data to infer cetacean distribution, density (number of whales/km2), and abundance. Unmanned aircraft systems (UAS) have potential to augment or replace some manned aerial surveys for cetaceans. We conducted a three-way comparison among visual observations made by marine mammal observers aboard a Turbo Commander aircraft; imagery autonomously collected by a Nikon D810 camera system mounted to a belly port on the Turbo Commander; and imagery collected by a similar camera system on a remotely controlled ScanEagle® UAS operated by the US Navy. Bowhead whale density estimates derived from the marine mammal observer data were higher than those from the Turbo Commander imagery; comparisons to the UAS imagery depended on survey sector and analytical method. Beluga density estimates derived from either dataset collected aboard the Turbo Commander were higher than estimates derived from the UAS imagery. Uncertainties in density estimates derived from the marine mammal observer data were lower than estimates derived from either imagery dataset due to the small sample sizes in the imagery. The visual line-transect aerial survey conducted by marine mammal observers aboard the Turbo Commander was 68.5% of the cost of the photo strip-transect survey aboard the same aircraft and 9.4% of the cost of the UAS survey.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/JUVS-2018-0002\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/JUVS-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/JUVS-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty
Manned aerial surveys have been used successfully for decades to collect data to infer cetacean distribution, density (number of whales/km2), and abundance. Unmanned aircraft systems (UAS) have potential to augment or replace some manned aerial surveys for cetaceans. We conducted a three-way comparison among visual observations made by marine mammal observers aboard a Turbo Commander aircraft; imagery autonomously collected by a Nikon D810 camera system mounted to a belly port on the Turbo Commander; and imagery collected by a similar camera system on a remotely controlled ScanEagle® UAS operated by the US Navy. Bowhead whale density estimates derived from the marine mammal observer data were higher than those from the Turbo Commander imagery; comparisons to the UAS imagery depended on survey sector and analytical method. Beluga density estimates derived from either dataset collected aboard the Turbo Commander were higher than estimates derived from the UAS imagery. Uncertainties in density estimates derived from the marine mammal observer data were lower than estimates derived from either imagery dataset due to the small sample sizes in the imagery. The visual line-transect aerial survey conducted by marine mammal observers aboard the Turbo Commander was 68.5% of the cost of the photo strip-transect survey aboard the same aircraft and 9.4% of the cost of the UAS survey.