{"title":"广义Grigorchuk超群的生长","authors":"Supun T. Samarakoon","doi":"10.12958/adm1451","DOIUrl":null,"url":null,"abstract":"Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On growth of generalized Grigorchuk's overgroups\",\"authors\":\"Supun T. Samarakoon\",\"doi\":\"10.12958/adm1451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.