广义Grigorchuk超群的生长

IF 0.3 Q4 MATHEMATICS, APPLIED
Supun T. Samarakoon
{"title":"广义Grigorchuk超群的生长","authors":"Supun T. Samarakoon","doi":"10.12958/adm1451","DOIUrl":null,"url":null,"abstract":"Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On growth of generalized Grigorchuk's overgroups\",\"authors\":\"Supun T. Samarakoon\",\"doi\":\"10.12958/adm1451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Grigorchuk的超群G~是一个中间生长的分支群。它包含1980年构造的第一个中间增长的Grigorchuk扭群G,但也具有无穷阶元素。它的增长明显大于G的增长。群G,对应于序列(012)∞=012012…,是{Gω|ω∈Ω族的一员={0,1,2}N}当序列ω最终不是常数时,由中间增长的组组成。根据这个构造,我们定义了广义上群的族{G~ω,ω∈Ω}。则G~=G~(012)∞,并且对于每个ω∈Ω,Gω是G~ω的子群。我们证明,如果ω最终是常数,那么G~ω是多项式增长的,如果ω不是最终常数,那么G~ω是中间增长的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On growth of generalized Grigorchuk's overgroups
Grigorchuk's Overgroup G˜, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞=012012…, is a member of the family {Gω|ω∈Ω={0,1,2}N} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction we define the family {G˜ω,ω∈Ω} of generalized overgroups. Then G˜=G˜(012)∞ and Gω is a subgroup of G˜ω for each ω∈Ω. We prove, if ω is eventually constant, then G˜ω is of polynomial growth and if ω is not eventually constant, then G˜ω is of intermediate growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信