{"title":"logistic混合模型中混合分布非参数估计的顶点交换方法","authors":"L. Marquart, G. Verbeke","doi":"10.1177/1471082X19889143","DOIUrl":null,"url":null,"abstract":"The conventional normality assumption for the random effects distribution in logistic mixed models can be too restrictive in some applications. In our data example of a longitudinal study modelling employment participation of Australian women, the random effects exhibit non-normality due to a potential mover–stayer scenario. In such a scenario, the women observed to remain in the same initial response state over the study period may consist of two subgroups: latent stayers—those with extremely small probability of transitioning response states—and latent movers, those with a probability of transitioning response states. The similarities between estimating the random effects using non-parametric approaches and mover–stayer models have previously been highlighted. We explore non-parametric approaches to model univariate and bivariate random effects in a potential mover–stayer scenario. As there are limited approaches available to fit the non-parametric maximum likelihood estimate for bivariate random effects in logistic mixed models, we implement the Vertex Exchange Method (VEM) to estimate the random effects in logistic mixed models. The approximation of the non-parametric maximum likelihood estimate derived by the VEM algorithm induces more flexibility of the random effects, identifying regions corresponding to potential latent stayers in the non-employment category in our data example.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X19889143","citationCount":"0","resultStr":"{\"title\":\"Vertex Exchange Method for non-parametric estimation of mixing distributions in logistic mixed models\",\"authors\":\"L. Marquart, G. Verbeke\",\"doi\":\"10.1177/1471082X19889143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional normality assumption for the random effects distribution in logistic mixed models can be too restrictive in some applications. In our data example of a longitudinal study modelling employment participation of Australian women, the random effects exhibit non-normality due to a potential mover–stayer scenario. In such a scenario, the women observed to remain in the same initial response state over the study period may consist of two subgroups: latent stayers—those with extremely small probability of transitioning response states—and latent movers, those with a probability of transitioning response states. The similarities between estimating the random effects using non-parametric approaches and mover–stayer models have previously been highlighted. We explore non-parametric approaches to model univariate and bivariate random effects in a potential mover–stayer scenario. As there are limited approaches available to fit the non-parametric maximum likelihood estimate for bivariate random effects in logistic mixed models, we implement the Vertex Exchange Method (VEM) to estimate the random effects in logistic mixed models. The approximation of the non-parametric maximum likelihood estimate derived by the VEM algorithm induces more flexibility of the random effects, identifying regions corresponding to potential latent stayers in the non-employment category in our data example.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X19889143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X19889143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X19889143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Vertex Exchange Method for non-parametric estimation of mixing distributions in logistic mixed models
The conventional normality assumption for the random effects distribution in logistic mixed models can be too restrictive in some applications. In our data example of a longitudinal study modelling employment participation of Australian women, the random effects exhibit non-normality due to a potential mover–stayer scenario. In such a scenario, the women observed to remain in the same initial response state over the study period may consist of two subgroups: latent stayers—those with extremely small probability of transitioning response states—and latent movers, those with a probability of transitioning response states. The similarities between estimating the random effects using non-parametric approaches and mover–stayer models have previously been highlighted. We explore non-parametric approaches to model univariate and bivariate random effects in a potential mover–stayer scenario. As there are limited approaches available to fit the non-parametric maximum likelihood estimate for bivariate random effects in logistic mixed models, we implement the Vertex Exchange Method (VEM) to estimate the random effects in logistic mixed models. The approximation of the non-parametric maximum likelihood estimate derived by the VEM algorithm induces more flexibility of the random effects, identifying regions corresponding to potential latent stayers in the non-employment category in our data example.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.