一维广义双相问题的正解分析

IF 3.2 1区 数学 Q1 MATHEMATICS
B. Son, Inbo Sim
{"title":"一维广义双相问题的正解分析","authors":"B. Son, Inbo Sim","doi":"10.1515/anona-2022-0240","DOIUrl":null,"url":null,"abstract":"Abstract We study positive solutions to the one-dimensional generalized double phase problems of the form: − ( a ( t ) φ p ( u ′ ) + b ( t ) φ q ( u ′ ) ) ′ = λ h ( t ) f ( u ) , t ∈ ( 0 , 1 ) , u ( 0 ) = 0 = u ( 1 ) , \\left\\{\\begin{array}{l}-(a\\left(t){\\varphi }_{p}\\left(u^{\\prime} )+b\\left(t){\\varphi }_{q}\\left(u^{\\prime} ))^{\\prime} =\\lambda h\\left(t)f\\left(u),\\hspace{1em}t\\in \\left(0,1),\\\\ u\\left(0)=0=u\\left(1),\\end{array}\\right. where 1 < p < q < ∞ 1\\lt p\\lt q\\lt \\infty , φ m ( s ) ≔ ∣ s ∣ m − 2 s {\\varphi }_{m}\\left(s):= | s{| }^{m-2}s , a , b ∈ C ( [ 0 , 1 ] , [ 0 , ∞ ) ) a,b\\in C\\left(\\left[0,1],{[}0,\\infty )) , h ∈ L 1 ( ( 0 , 1 ) , ( 0 , ∞ ) ) ∩ C ( ( 0 , 1 ) , ( 0 , ∞ ) ) , h\\in {L}^{1}\\left(\\left(0,1),\\left(0,\\infty ))\\cap C\\left(\\left(0,1),\\left(0,\\infty )), and f ∈ C ( [ 0 , ∞ ) , R ) f\\in C\\left({[}0,\\infty ),{\\mathbb{R}}) is nondecreasing. More precisely, we show various existence results including the existence of at least two or three positive solutions according to the behaviors of f ( s ) f\\left(s) near zero and infinity. Both positone (i.e., f ( 0 ) ≥ 0 f\\left(0)\\ge 0 ) and semipositone (i.e., f ( 0 ) < 0 f\\left(0)\\lt 0 ) problems are considered, and the results are obtained through the Krasnoselskii-type fixed point theorem. We also apply these results to show the existence of positive radial solutions for high-dimensional generalized double phase problems on the exterior of a ball.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1365 - 1382"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of positive solutions to one-dimensional generalized double phase problems\",\"authors\":\"B. Son, Inbo Sim\",\"doi\":\"10.1515/anona-2022-0240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study positive solutions to the one-dimensional generalized double phase problems of the form: − ( a ( t ) φ p ( u ′ ) + b ( t ) φ q ( u ′ ) ) ′ = λ h ( t ) f ( u ) , t ∈ ( 0 , 1 ) , u ( 0 ) = 0 = u ( 1 ) , \\\\left\\\\{\\\\begin{array}{l}-(a\\\\left(t){\\\\varphi }_{p}\\\\left(u^{\\\\prime} )+b\\\\left(t){\\\\varphi }_{q}\\\\left(u^{\\\\prime} ))^{\\\\prime} =\\\\lambda h\\\\left(t)f\\\\left(u),\\\\hspace{1em}t\\\\in \\\\left(0,1),\\\\\\\\ u\\\\left(0)=0=u\\\\left(1),\\\\end{array}\\\\right. where 1 < p < q < ∞ 1\\\\lt p\\\\lt q\\\\lt \\\\infty , φ m ( s ) ≔ ∣ s ∣ m − 2 s {\\\\varphi }_{m}\\\\left(s):= | s{| }^{m-2}s , a , b ∈ C ( [ 0 , 1 ] , [ 0 , ∞ ) ) a,b\\\\in C\\\\left(\\\\left[0,1],{[}0,\\\\infty )) , h ∈ L 1 ( ( 0 , 1 ) , ( 0 , ∞ ) ) ∩ C ( ( 0 , 1 ) , ( 0 , ∞ ) ) , h\\\\in {L}^{1}\\\\left(\\\\left(0,1),\\\\left(0,\\\\infty ))\\\\cap C\\\\left(\\\\left(0,1),\\\\left(0,\\\\infty )), and f ∈ C ( [ 0 , ∞ ) , R ) f\\\\in C\\\\left({[}0,\\\\infty ),{\\\\mathbb{R}}) is nondecreasing. More precisely, we show various existence results including the existence of at least two or three positive solutions according to the behaviors of f ( s ) f\\\\left(s) near zero and infinity. Both positone (i.e., f ( 0 ) ≥ 0 f\\\\left(0)\\\\ge 0 ) and semipositone (i.e., f ( 0 ) < 0 f\\\\left(0)\\\\lt 0 ) problems are considered, and the results are obtained through the Krasnoselskii-type fixed point theorem. We also apply these results to show the existence of positive radial solutions for high-dimensional generalized double phase problems on the exterior of a ball.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1365 - 1382\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0240\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0240","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们研究了形式为−(a(t)φp(u′)+b(t)Φq(u′{l}-(a\left(t){\varphi}_{p}\left(u^{\prime}{1em}t\在\left(0,1)中,\\u\left(0)=0=u\left(1),\end{array}\right。其中1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Analysis of positive solutions to one-dimensional generalized double phase problems
Abstract We study positive solutions to the one-dimensional generalized double phase problems of the form: − ( a ( t ) φ p ( u ′ ) + b ( t ) φ q ( u ′ ) ) ′ = λ h ( t ) f ( u ) , t ∈ ( 0 , 1 ) , u ( 0 ) = 0 = u ( 1 ) , \left\{\begin{array}{l}-(a\left(t){\varphi }_{p}\left(u^{\prime} )+b\left(t){\varphi }_{q}\left(u^{\prime} ))^{\prime} =\lambda h\left(t)f\left(u),\hspace{1em}t\in \left(0,1),\\ u\left(0)=0=u\left(1),\end{array}\right. where 1 < p < q < ∞ 1\lt p\lt q\lt \infty , φ m ( s ) ≔ ∣ s ∣ m − 2 s {\varphi }_{m}\left(s):= | s{| }^{m-2}s , a , b ∈ C ( [ 0 , 1 ] , [ 0 , ∞ ) ) a,b\in C\left(\left[0,1],{[}0,\infty )) , h ∈ L 1 ( ( 0 , 1 ) , ( 0 , ∞ ) ) ∩ C ( ( 0 , 1 ) , ( 0 , ∞ ) ) , h\in {L}^{1}\left(\left(0,1),\left(0,\infty ))\cap C\left(\left(0,1),\left(0,\infty )), and f ∈ C ( [ 0 , ∞ ) , R ) f\in C\left({[}0,\infty ),{\mathbb{R}}) is nondecreasing. More precisely, we show various existence results including the existence of at least two or three positive solutions according to the behaviors of f ( s ) f\left(s) near zero and infinity. Both positone (i.e., f ( 0 ) ≥ 0 f\left(0)\ge 0 ) and semipositone (i.e., f ( 0 ) < 0 f\left(0)\lt 0 ) problems are considered, and the results are obtained through the Krasnoselskii-type fixed point theorem. We also apply these results to show the existence of positive radial solutions for high-dimensional generalized double phase problems on the exterior of a ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信