{"title":"CuO/水纳米流体弹簧紊流器三管换热器换热实验分析","authors":"R. Kumar, P. Chandra, Harsimranjot Singh","doi":"10.1166/jon.2023.1936","DOIUrl":null,"url":null,"abstract":"An Experiment has been performed to find out effect of coiled spring turbulators on the heat transfer and pressure drop in a triple tube heat exchanger using water and CuO/water (0.8%vol/vol) as working media. Two spring turbulators having pitch 5 mm and 10 mm with a common wire diameter\n of 1 mm are being used. The experiment was carried out under turbulent flow at different Reynolds numbers varying between 4000 to 16,000. In this experiment, the variation in the rate of heat transfer and friction factor have been analyzed for parallel and counter flow arrangements. The combination\n of the lower-pitched insert with CuO attained the maximum heat transfer increment in the counter flow pattern. For counter flow arrangement, augmentation in Nusselt number for a triple tube with lower spring pitch with CuO nanofluid is 63.33%, which is higher in comparison to the plain triple\n tube with water as working fluid. The maximum thermal performance value is observed for plain tube with CuO nanofluid having the value 1.04 at Reynolds number of 4000.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis of Heat Transfer in a Triple Tube Heat Exchanger with Spring Turbulator Using CuO/Water Nanofluid\",\"authors\":\"R. Kumar, P. Chandra, Harsimranjot Singh\",\"doi\":\"10.1166/jon.2023.1936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Experiment has been performed to find out effect of coiled spring turbulators on the heat transfer and pressure drop in a triple tube heat exchanger using water and CuO/water (0.8%vol/vol) as working media. Two spring turbulators having pitch 5 mm and 10 mm with a common wire diameter\\n of 1 mm are being used. The experiment was carried out under turbulent flow at different Reynolds numbers varying between 4000 to 16,000. In this experiment, the variation in the rate of heat transfer and friction factor have been analyzed for parallel and counter flow arrangements. The combination\\n of the lower-pitched insert with CuO attained the maximum heat transfer increment in the counter flow pattern. For counter flow arrangement, augmentation in Nusselt number for a triple tube with lower spring pitch with CuO nanofluid is 63.33%, which is higher in comparison to the plain triple\\n tube with water as working fluid. The maximum thermal performance value is observed for plain tube with CuO nanofluid having the value 1.04 at Reynolds number of 4000.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.1936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Experimental Analysis of Heat Transfer in a Triple Tube Heat Exchanger with Spring Turbulator Using CuO/Water Nanofluid
An Experiment has been performed to find out effect of coiled spring turbulators on the heat transfer and pressure drop in a triple tube heat exchanger using water and CuO/water (0.8%vol/vol) as working media. Two spring turbulators having pitch 5 mm and 10 mm with a common wire diameter
of 1 mm are being used. The experiment was carried out under turbulent flow at different Reynolds numbers varying between 4000 to 16,000. In this experiment, the variation in the rate of heat transfer and friction factor have been analyzed for parallel and counter flow arrangements. The combination
of the lower-pitched insert with CuO attained the maximum heat transfer increment in the counter flow pattern. For counter flow arrangement, augmentation in Nusselt number for a triple tube with lower spring pitch with CuO nanofluid is 63.33%, which is higher in comparison to the plain triple
tube with water as working fluid. The maximum thermal performance value is observed for plain tube with CuO nanofluid having the value 1.04 at Reynolds number of 4000.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.