Jadan Resnik Jaleel UC, M. R, S. Devi K R, D. Pinheiro, M. Mohan
{"title":"光催化降解有机染料MoS2基材料的结构、形态和光学性能","authors":"Jadan Resnik Jaleel UC, M. R, S. Devi K R, D. Pinheiro, M. Mohan","doi":"10.3390/photochem2030042","DOIUrl":null,"url":null,"abstract":"Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMDCs) having versatile properties and plays a great role in the photodegradation of organic dyes. MoS2 also finds applications in diverse fields such as catalysis, electronics, and nanomedicine transportation. MoS2 can be prepared by using chemical and physical methods such as hydrothermal, solvothermal, and chemical vapour deposition methods. The preparation method employed can produce subtle but significant changes in the morphology. To increase the efficiency of MoS2, it can be combined with different materials to produce composites that improve the photodegradation efficiency of MoS2. The various methods of preparation, the morphology of MoS2, and photodegradation activity of the MoS2-based nanocomposites are briefly discussed in this review.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structural, Morphological and Optical Properties of MoS2-Based Materials for Photocatalytic Degradation of Organic Dye\",\"authors\":\"Jadan Resnik Jaleel UC, M. R, S. Devi K R, D. Pinheiro, M. Mohan\",\"doi\":\"10.3390/photochem2030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMDCs) having versatile properties and plays a great role in the photodegradation of organic dyes. MoS2 also finds applications in diverse fields such as catalysis, electronics, and nanomedicine transportation. MoS2 can be prepared by using chemical and physical methods such as hydrothermal, solvothermal, and chemical vapour deposition methods. The preparation method employed can produce subtle but significant changes in the morphology. To increase the efficiency of MoS2, it can be combined with different materials to produce composites that improve the photodegradation efficiency of MoS2. The various methods of preparation, the morphology of MoS2, and photodegradation activity of the MoS2-based nanocomposites are briefly discussed in this review.\",\"PeriodicalId\":74440,\"journal\":{\"name\":\"Photochem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/photochem2030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural, Morphological and Optical Properties of MoS2-Based Materials for Photocatalytic Degradation of Organic Dye
Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMDCs) having versatile properties and plays a great role in the photodegradation of organic dyes. MoS2 also finds applications in diverse fields such as catalysis, electronics, and nanomedicine transportation. MoS2 can be prepared by using chemical and physical methods such as hydrothermal, solvothermal, and chemical vapour deposition methods. The preparation method employed can produce subtle but significant changes in the morphology. To increase the efficiency of MoS2, it can be combined with different materials to produce composites that improve the photodegradation efficiency of MoS2. The various methods of preparation, the morphology of MoS2, and photodegradation activity of the MoS2-based nanocomposites are briefly discussed in this review.