东非Sio-Malaba Malakisi河跨界流域土地覆盖变化分析:确定潜在的土地利用过渡制度

Pub Date : 2021-11-29 DOI:10.1080/19376812.2021.2007143
Stanley Chasia, M. Herrnegger, B. Juma, J. Kimuyu, L. Sitoki, L. Olang
{"title":"东非Sio-Malaba Malakisi河跨界流域土地覆盖变化分析:确定潜在的土地利用过渡制度","authors":"Stanley Chasia, M. Herrnegger, B. Juma, J. Kimuyu, L. Sitoki, L. Olang","doi":"10.1080/19376812.2021.2007143","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study evaluated historical land-cover states in order to identify potential land-use transition regimes leading to land degradation. Landsat satellite datasets were used to characterize land-cover states for 1986–2017 period. The multinomial probability distribution was used to establish sample size for training and accuracy assessment. Using a hybrid image classification approach, individual satellite images were initially clustered using the ISODATA technique, and spectral classes later transformed posteriori into respective thematic classes. Maximum Likelihood Function was subsequently used to assign pixels into classes with highest probability. Approximately 12% of mixed forest declined, while cropland increased by 30% between 1995–2008.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis of land-cover changes in the Transboundary Sio-Malaba-Malakisi River Basin of East Africa: Towards identifying potential land-use transition regimes\",\"authors\":\"Stanley Chasia, M. Herrnegger, B. Juma, J. Kimuyu, L. Sitoki, L. Olang\",\"doi\":\"10.1080/19376812.2021.2007143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study evaluated historical land-cover states in order to identify potential land-use transition regimes leading to land degradation. Landsat satellite datasets were used to characterize land-cover states for 1986–2017 period. The multinomial probability distribution was used to establish sample size for training and accuracy assessment. Using a hybrid image classification approach, individual satellite images were initially clustered using the ISODATA technique, and spectral classes later transformed posteriori into respective thematic classes. Maximum Likelihood Function was subsequently used to assign pixels into classes with highest probability. Approximately 12% of mixed forest declined, while cropland increased by 30% between 1995–2008.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19376812.2021.2007143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19376812.2021.2007143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要:本研究评估了历史上的土地覆盖状态,以确定导致土地退化的潜在土地利用过渡制度。陆地卫星数据集用于表征1986-2017年期间的土地覆盖状态。使用多项概率分布来确定训练和准确性评估的样本量。采用混合图像分类方法,首先使用ISODATA技术对单个卫星图像进行聚类,然后将光谱分类后验转换为各自的主题分类。随后使用最大似然函数将像素分配到具有最高概率的类中。1995年至2008年间,大约12%的混交林面积减少,而耕地面积增加了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analysis of land-cover changes in the Transboundary Sio-Malaba-Malakisi River Basin of East Africa: Towards identifying potential land-use transition regimes
ABSTRACT This study evaluated historical land-cover states in order to identify potential land-use transition regimes leading to land degradation. Landsat satellite datasets were used to characterize land-cover states for 1986–2017 period. The multinomial probability distribution was used to establish sample size for training and accuracy assessment. Using a hybrid image classification approach, individual satellite images were initially clustered using the ISODATA technique, and spectral classes later transformed posteriori into respective thematic classes. Maximum Likelihood Function was subsequently used to assign pixels into classes with highest probability. Approximately 12% of mixed forest declined, while cropland increased by 30% between 1995–2008.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信