{"title":"基于多尺度因子分解的贝叶斯时空模型","authors":"Marco A. R. Ferreira","doi":"10.1002/wics.1509","DOIUrl":null,"url":null,"abstract":"We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1509","citationCount":"2","resultStr":"{\"title\":\"Bayesian spatial and spatiotemporal models based on multiscale factorizations\",\"authors\":\"Marco A. R. Ferreira\",\"doi\":\"10.1002/wics.1509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1509\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1509\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1509","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian spatial and spatiotemporal models based on multiscale factorizations
We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.