基于多尺度因子分解的贝叶斯时空模型

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Marco A. R. Ferreira
{"title":"基于多尺度因子分解的贝叶斯时空模型","authors":"Marco A. R. Ferreira","doi":"10.1002/wics.1509","DOIUrl":null,"url":null,"abstract":"We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1509","citationCount":"2","resultStr":"{\"title\":\"Bayesian spatial and spatiotemporal models based on multiscale factorizations\",\"authors\":\"Marco A. R. Ferreira\",\"doi\":\"10.1002/wics.1509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1509\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1509\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1509","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文综述了基于空间多尺度分解的时空模型。具体来说,我们回顾了基于小波和高斯和泊松数据的Kolaczyk-Huang分解的模型。这些多尺度模型在多个空间分辨率水平上将空间和时空数据集分解成许多小分量,称为多尺度系数。然后对每个多尺度系数独立进行分析。然后,利用聚合方程对多个多尺度系数的分析结果进行相干组合,得到原始分辨率水平的统计分析结果。这种分析的计算成本随样本量线性增长。此外,这些模型的计算是可伸缩的、可并行的和快速的。因此,这些多尺度模型对于大量时空数据集的分析非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian spatial and spatiotemporal models based on multiscale factorizations
We review the literature on spatial and spatiotemporal models based on spatial multiscale factorizations. Specifically, we review models based on wavelets and Kolaczyk–Huang factorizations for Gaussian and Poisson data. These multiscale models decompose spatial and spatiotemporal datasets into many small components, called multiscale coefficients, at multiple levels of spatial resolution. Then analysis proceeds independently for each multiscale coefficient. After that, aggregation equations are used to coherently combine the analyses from the multiple multiscale coefficients to obtain a statistical analysis at the original resolution level. The computational cost of such analysis grows linearly with sample size. Furthermore, computations for these models are scalable, parallelizable, and fast. Therefore, these multiscale models are tremendously useful for the analysis of massive spatial and spatiotemporal datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信