利用\(\psi \) -分数积分反演Hermite-Hadamard不等式

Tariq A. Aljaaidi, D. Pachpatte
{"title":"利用\\(\\psi \\) -分数积分反演Hermite-Hadamard不等式","authors":"Tariq A. Aljaaidi, D. Pachpatte","doi":"10.30538/PSRP-EASL2020.0053","DOIUrl":null,"url":null,"abstract":"Our purpose in this paper is to use \\(\\psi-\\)Riemann-Liouville fractional integral operator which is the fractional integral of any function with respect to another increasing function to establish some new fractional integral inequalities of Hermite-Hadamard, involving concave functions. Using the concave functions, we establish some new fractional integral inequalities related to the Hermite-Hadamard type inequalities via \\(\\psi-\\)Riemann-Liouville fractional integral operator.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reverse Hermite-Hadamard's inequalities using \\\\(\\\\psi \\\\)-fractional integral\",\"authors\":\"Tariq A. Aljaaidi, D. Pachpatte\",\"doi\":\"10.30538/PSRP-EASL2020.0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our purpose in this paper is to use \\\\(\\\\psi-\\\\)Riemann-Liouville fractional integral operator which is the fractional integral of any function with respect to another increasing function to establish some new fractional integral inequalities of Hermite-Hadamard, involving concave functions. Using the concave functions, we establish some new fractional integral inequalities related to the Hermite-Hadamard type inequalities via \\\\(\\\\psi-\\\\)Riemann-Liouville fractional integral operator.\",\"PeriodicalId\":11518,\"journal\":{\"name\":\"Engineering and Applied Science Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Applied Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-EASL2020.0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-EASL2020.0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文的目的是利用任意函数相对于另一个递增函数的分数积分——Riemann-Liouville分数积分算子,建立一些涉及凹函数的Hermite-Hadamard新的分数积分不等式。利用凹函数,通过Riemann-Liouville分数积分算子,建立了一些与Hermite-Hadamard型不等式有关的新的分数积分不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse Hermite-Hadamard's inequalities using \(\psi \)-fractional integral
Our purpose in this paper is to use \(\psi-\)Riemann-Liouville fractional integral operator which is the fractional integral of any function with respect to another increasing function to establish some new fractional integral inequalities of Hermite-Hadamard, involving concave functions. Using the concave functions, we establish some new fractional integral inequalities related to the Hermite-Hadamard type inequalities via \(\psi-\)Riemann-Liouville fractional integral operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信