有机肥与无机肥配施对玉米-矮豆间作的影响

IF 1.6 4区 农林科学 Q1 Agricultural and Biological Sciences
Gift Ndengu, P. Mponela, B. Chataika, L. Desta, R. Chirwa, Gudeta G. Sileshi
{"title":"有机肥与无机肥配施对玉米-矮豆间作的影响","authors":"Gift Ndengu, P. Mponela, B. Chataika, L. Desta, R. Chirwa, Gudeta G. Sileshi","doi":"10.1017/S0014479722000102","DOIUrl":null,"url":null,"abstract":"Summary In sub-Saharan Africa (SSA), farmers intercrop common beans with maize but apply inorganic or organic fertilisers targeting only maize. Effects of this practice on bush bean yield have not been fully evaluated with respect to input use and compatibility when intercropped with maize. An on-farm trial managed by smallholder community members was conducted to assess the influence of various soil fertility management options and cropping systems on the yield of two bush bean genotypes (SER45 and SER83) in two agro-ecological zones of Malawi. The farmer-managed trials were laid out in split-plot design, with the bean genotypes as main plots and a combination of the soil fertility management options (i.e., no input, manure, fertiliser and fertiliser + manure) and cropping systems (i.e., sole crop and intercrop) as subplots. The trials were affected by terminal drought and dry spells, but results show that manure and fertiliser application enhanced the resilience of the drought-tolerant bean genotypes. The genotype SER45 was responsive to manure application in the sole crop, giving a 44.4% yield increase over no-manure application. In sole cropping with fertiliser plus manure, bean yields improved by 40.1% for SER45 and 78.3% for SER83 relative to the no-input control. Although sole cropping had higher bean yields, the treatment with manure and fertiliser had a higher land equivalence ratio for intercrop of 1.54 for SER45 and 1.32 for SER83 over sole cropping. These results show that, under smallholder farmer management, the climate adaptability of bush bean genotypes could be enhanced by the combined application of organic and inorganic fertilisers in maize–bean intercrop. The combined application also enhances whole-farm productivity of the common maize–bean intercrop practice than monocrop, hence is of benefit to most low-input smallholder farmers of SSA.","PeriodicalId":12245,"journal":{"name":"Experimental Agriculture","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of combining organic manure and inorganic fertilisers on maize–bush bean intercropping\",\"authors\":\"Gift Ndengu, P. Mponela, B. Chataika, L. Desta, R. Chirwa, Gudeta G. Sileshi\",\"doi\":\"10.1017/S0014479722000102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In sub-Saharan Africa (SSA), farmers intercrop common beans with maize but apply inorganic or organic fertilisers targeting only maize. Effects of this practice on bush bean yield have not been fully evaluated with respect to input use and compatibility when intercropped with maize. An on-farm trial managed by smallholder community members was conducted to assess the influence of various soil fertility management options and cropping systems on the yield of two bush bean genotypes (SER45 and SER83) in two agro-ecological zones of Malawi. The farmer-managed trials were laid out in split-plot design, with the bean genotypes as main plots and a combination of the soil fertility management options (i.e., no input, manure, fertiliser and fertiliser + manure) and cropping systems (i.e., sole crop and intercrop) as subplots. The trials were affected by terminal drought and dry spells, but results show that manure and fertiliser application enhanced the resilience of the drought-tolerant bean genotypes. The genotype SER45 was responsive to manure application in the sole crop, giving a 44.4% yield increase over no-manure application. In sole cropping with fertiliser plus manure, bean yields improved by 40.1% for SER45 and 78.3% for SER83 relative to the no-input control. Although sole cropping had higher bean yields, the treatment with manure and fertiliser had a higher land equivalence ratio for intercrop of 1.54 for SER45 and 1.32 for SER83 over sole cropping. These results show that, under smallholder farmer management, the climate adaptability of bush bean genotypes could be enhanced by the combined application of organic and inorganic fertilisers in maize–bean intercrop. The combined application also enhances whole-farm productivity of the common maize–bean intercrop practice than monocrop, hence is of benefit to most low-input smallholder farmers of SSA.\",\"PeriodicalId\":12245,\"journal\":{\"name\":\"Experimental Agriculture\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S0014479722000102\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0014479722000102","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

在撒哈拉以南非洲(SSA),农民将普通豆类与玉米间作,但只针对玉米施用无机或有机肥料。在投入物使用和间作玉米时的相容性方面,这种做法对灌木豆产量的影响尚未得到充分评价。在马拉维的两个农业生态区进行了一项由小农社区成员管理的田间试验,以评估各种土壤肥力管理方案和种植制度对两种灌木豆基因型(SER45和SER83)产量的影响。农民管理的试验采用分畦设计,以豆类基因型为主要小区,结合土壤肥力管理方案(即无投入、粪肥、化肥和化肥+粪肥)和种植制度(即单作和间作)作为次要小区。试验受干旱末期和干旱期的影响,但结果表明,施用有机肥和化肥增强了抗旱大豆基因型的抗旱能力。SER45基因型对单作施肥有响应,比不施肥增产44.4%。在单作中,与无投入对照相比,施用SER45和SER83的大豆产量分别提高了40.1%和78.3%。虽然单作大豆产量较高,但与单作相比,有机肥和化肥处理的SER45和SER83的间作土地等效比为1.54和1.32。综上所述,在小农经营条件下,有机无机肥与玉米-豆类间作配施可提高灌木豆基因型的气候适应性。与单一作物相比,联合施用还能提高普通玉米-豆类间作的全农场生产力,因此对大多数低投入的小农有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of combining organic manure and inorganic fertilisers on maize–bush bean intercropping
Summary In sub-Saharan Africa (SSA), farmers intercrop common beans with maize but apply inorganic or organic fertilisers targeting only maize. Effects of this practice on bush bean yield have not been fully evaluated with respect to input use and compatibility when intercropped with maize. An on-farm trial managed by smallholder community members was conducted to assess the influence of various soil fertility management options and cropping systems on the yield of two bush bean genotypes (SER45 and SER83) in two agro-ecological zones of Malawi. The farmer-managed trials were laid out in split-plot design, with the bean genotypes as main plots and a combination of the soil fertility management options (i.e., no input, manure, fertiliser and fertiliser + manure) and cropping systems (i.e., sole crop and intercrop) as subplots. The trials were affected by terminal drought and dry spells, but results show that manure and fertiliser application enhanced the resilience of the drought-tolerant bean genotypes. The genotype SER45 was responsive to manure application in the sole crop, giving a 44.4% yield increase over no-manure application. In sole cropping with fertiliser plus manure, bean yields improved by 40.1% for SER45 and 78.3% for SER83 relative to the no-input control. Although sole cropping had higher bean yields, the treatment with manure and fertiliser had a higher land equivalence ratio for intercrop of 1.54 for SER45 and 1.32 for SER83 over sole cropping. These results show that, under smallholder farmer management, the climate adaptability of bush bean genotypes could be enhanced by the combined application of organic and inorganic fertilisers in maize–bean intercrop. The combined application also enhances whole-farm productivity of the common maize–bean intercrop practice than monocrop, hence is of benefit to most low-input smallholder farmers of SSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Agriculture
Experimental Agriculture 农林科学-农艺学
CiteScore
2.50
自引率
6.20%
发文量
29
审稿时长
24 months
期刊介绍: With a focus on the tropical and sub-tropical regions of the world, Experimental Agriculture publishes the results of original research on field, plantation and herbage crops grown for food or feed, or for industrial purposes, and on farming systems, including livestock and people. It reports experimental work designed to explain how crops respond to the environment in biological and physical terms, and on the social and economic issues that may influence the uptake of the results of research by policy makers and farmers, including the role of institutions and partnerships in delivering impact. The journal also publishes accounts and critical discussions of new quantitative and qualitative methods in agricultural and ecosystems research, and of contemporary issues arising in countries where agricultural production needs to develop rapidly. There is a regular book review section and occasional, often invited, reviews of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信