Tengiz Buchukuri , Otar Chkadua , David Natroshvili
{"title":"经典弹性理论中混合和裂纹型问题的基本解方法","authors":"Tengiz Buchukuri , Otar Chkadua , David Natroshvili","doi":"10.1016/j.trmi.2017.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse some new aspects concerning application of the fundamental solution method to the basic three-dimensional boundary value problems, mixed transmission problems, and also interior and interfacial crack type problems for steady state oscillation equations of the elasticity theory. First we present existence and uniqueness theorems of weak solutions and derive the corresponding norm estimates in appropriate function spaces. Afterwards, by means of the columns of Kupradze’s fundamental solution matrix special systems of vector functions are constructed explicitly. The linear independence and completeness of these systems are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. It is shown that the problem of construction of approximate solutions to the basic and mixed boundary value problems and to the interior and interfacial crack problems can be reduced to the problems of approximation of the given boundary vector functions by elements of the linear spans of the corresponding complete systems constructed by the fundamental solution vectors. By this approach the approximate solutions of the boundary value and transmission problems are represented in the form of linear combinations of the columns of the fundamental solution matrix with appropriately chosen poles distributed outside the domain under consideration. The unknown coefficients of the linear combinations are defined by the approximation conditions of the corresponding boundary and transmission data.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 264-292"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.04.004","citationCount":"11","resultStr":"{\"title\":\"Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity\",\"authors\":\"Tengiz Buchukuri , Otar Chkadua , David Natroshvili\",\"doi\":\"10.1016/j.trmi.2017.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyse some new aspects concerning application of the fundamental solution method to the basic three-dimensional boundary value problems, mixed transmission problems, and also interior and interfacial crack type problems for steady state oscillation equations of the elasticity theory. First we present existence and uniqueness theorems of weak solutions and derive the corresponding norm estimates in appropriate function spaces. Afterwards, by means of the columns of Kupradze’s fundamental solution matrix special systems of vector functions are constructed explicitly. The linear independence and completeness of these systems are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. It is shown that the problem of construction of approximate solutions to the basic and mixed boundary value problems and to the interior and interfacial crack problems can be reduced to the problems of approximation of the given boundary vector functions by elements of the linear spans of the corresponding complete systems constructed by the fundamental solution vectors. By this approach the approximate solutions of the boundary value and transmission problems are represented in the form of linear combinations of the columns of the fundamental solution matrix with appropriately chosen poles distributed outside the domain under consideration. The unknown coefficients of the linear combinations are defined by the approximation conditions of the corresponding boundary and transmission data.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 3\",\"pages\":\"Pages 264-292\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.04.004\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217300107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity
We analyse some new aspects concerning application of the fundamental solution method to the basic three-dimensional boundary value problems, mixed transmission problems, and also interior and interfacial crack type problems for steady state oscillation equations of the elasticity theory. First we present existence and uniqueness theorems of weak solutions and derive the corresponding norm estimates in appropriate function spaces. Afterwards, by means of the columns of Kupradze’s fundamental solution matrix special systems of vector functions are constructed explicitly. The linear independence and completeness of these systems are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. It is shown that the problem of construction of approximate solutions to the basic and mixed boundary value problems and to the interior and interfacial crack problems can be reduced to the problems of approximation of the given boundary vector functions by elements of the linear spans of the corresponding complete systems constructed by the fundamental solution vectors. By this approach the approximate solutions of the boundary value and transmission problems are represented in the form of linear combinations of the columns of the fundamental solution matrix with appropriately chosen poles distributed outside the domain under consideration. The unknown coefficients of the linear combinations are defined by the approximation conditions of the corresponding boundary and transmission data.