对称双阱势Hill方程的本征函数

IF 0.7 Q2 MATHEMATICS
A. Kabataş
{"title":"对称双阱势Hill方程的本征函数","authors":"A. Kabataş","doi":"10.31801/cfsuasmas.974409","DOIUrl":null,"url":null,"abstract":"Throughout this paper the asymptotic approximations for eigen- functions of eigenvalue problems associated with Hill’s equation satisfying periodic and semi-periodic boundary conditions are derived when the potential is symmetric double well. These approximations are used to determine the Green’s functions of the related problems. Then, the obtained results are adapted to the Whittaker-Hill equation which has the symmetric double well potential and is widely investigated in the literature.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On eigenfunctions of Hill's equation with symmetric double well potential\",\"authors\":\"A. Kabataş\",\"doi\":\"10.31801/cfsuasmas.974409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Throughout this paper the asymptotic approximations for eigen- functions of eigenvalue problems associated with Hill’s equation satisfying periodic and semi-periodic boundary conditions are derived when the potential is symmetric double well. These approximations are used to determine the Green’s functions of the related problems. Then, the obtained results are adapted to the Whittaker-Hill equation which has the symmetric double well potential and is widely investigated in the literature.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.974409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.974409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了当势为对称双阱时,满足周期和半周期边界条件的Hill方程特征值问题的特征函数的渐近逼近。这些近似用于确定相关问题的格林函数。然后,将所得结果适用于文献中广泛研究的具有对称双阱势的Whittaker-Hill方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On eigenfunctions of Hill's equation with symmetric double well potential
Throughout this paper the asymptotic approximations for eigen- functions of eigenvalue problems associated with Hill’s equation satisfying periodic and semi-periodic boundary conditions are derived when the potential is symmetric double well. These approximations are used to determine the Green’s functions of the related problems. Then, the obtained results are adapted to the Whittaker-Hill equation which has the symmetric double well potential and is widely investigated in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信