加热系统动态控制下加热房屋和外部边界墙的温度演变

Q2 Engineering
L. Garbai, Gergely Pacza
{"title":"加热系统动态控制下加热房屋和外部边界墙的温度演变","authors":"L. Garbai, Gergely Pacza","doi":"10.1556/1848.2022.00368","DOIUrl":null,"url":null,"abstract":"\n The study presents a mathematical model for building heating control. The buildings are connected to district heating or to central heating. The task of the heating control is to maintain a preset constant indoor air temperature. Control disturbance is caused by external meteorological conditions, firstly by outdoor air temperature. The control action can be the change in heat transfer capacity of the radiators, whereby the indoor air temperature can be commanded back to the present value to offset the effect of the disturbance. Just the control can be a follower or of predictive type. The expected indoor air temperature can be calculated from the energy balances. These are composed of differential equations, describing dynamic equilibrium of heat transfer through the external walls, as well as heat storage in the walls and indoor air. Type of differential equations is linear, inhomogeneous, of first or second order.\n Solution of the differential equation results in describing the change in indoor air temperature in time as a function of outdoor air temperature. Further on, the equation determines the function of the necessary heating capacity to keep the indoor air temperature constant. By the model several heating programs can be evaluated. The physical model is shown in Fig. 1. Intermediate variable is the average temperature of the external walls. Heat conduction and convection through the walls is calculated by the difference of the indoor air temperature and of the average wall temperature by using relevant R\n 1 and R\n 2 heat resistance factors. The model is adequate when the heat transport within the building sections is neglectable, and the thermodynamic and heat transfer characteristics of the walls are identical. Thereby the model describes the heat balance of representative premises, but the results can be transferred to similar other premises, too.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature evolution in heated premises and external boundary wall with dynamic control of heating systems\",\"authors\":\"L. Garbai, Gergely Pacza\",\"doi\":\"10.1556/1848.2022.00368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The study presents a mathematical model for building heating control. The buildings are connected to district heating or to central heating. The task of the heating control is to maintain a preset constant indoor air temperature. Control disturbance is caused by external meteorological conditions, firstly by outdoor air temperature. The control action can be the change in heat transfer capacity of the radiators, whereby the indoor air temperature can be commanded back to the present value to offset the effect of the disturbance. Just the control can be a follower or of predictive type. The expected indoor air temperature can be calculated from the energy balances. These are composed of differential equations, describing dynamic equilibrium of heat transfer through the external walls, as well as heat storage in the walls and indoor air. Type of differential equations is linear, inhomogeneous, of first or second order.\\n Solution of the differential equation results in describing the change in indoor air temperature in time as a function of outdoor air temperature. Further on, the equation determines the function of the necessary heating capacity to keep the indoor air temperature constant. By the model several heating programs can be evaluated. The physical model is shown in Fig. 1. Intermediate variable is the average temperature of the external walls. Heat conduction and convection through the walls is calculated by the difference of the indoor air temperature and of the average wall temperature by using relevant R\\n 1 and R\\n 2 heat resistance factors. The model is adequate when the heat transport within the building sections is neglectable, and the thermodynamic and heat transfer characteristics of the walls are identical. Thereby the model describes the heat balance of representative premises, but the results can be transferred to similar other premises, too.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2022.00368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

该研究提出了一个建筑供暖控制的数学模型。这些建筑与区域供暖系统或中央供暖系统相连。供暖控制的任务是保持预设的恒定室内空气温度。控制干扰是由外部气象条件引起的,首先是室外气温。控制作用可以是散热器传热能力的变化,从而可以将室内空气温度命令回到当前值,以抵消干扰的影响。仅控制可以是跟随器或预测型。预期的室内空气温度可以根据能量平衡来计算。这些由微分方程组成,描述了通过外墙的热传递的动态平衡,以及墙壁和室内空气中的储热。微分方程的类型是线性的、非齐次的、一阶或二阶的。微分方程的求解结果是将室内空气温度随时间的变化描述为室外空气温度的函数。此外,该方程确定了保持室内空气温度恒定所需的制热能力的函数。通过该模型可以评估几个供暖方案。物理模型如图1所示。中间变量是外墙的平均温度。通过使用相关的R1和R2热阻因子,通过室内空气温度和平均壁温的差来计算通过壁的热传导和对流。当建筑截面内的热传输可忽略,并且墙体的热力学和传热特性相同时,该模型是足够的。因此,该模型描述了具有代表性的前提的热平衡,但其结果也可以转移到类似的其他前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature evolution in heated premises and external boundary wall with dynamic control of heating systems
The study presents a mathematical model for building heating control. The buildings are connected to district heating or to central heating. The task of the heating control is to maintain a preset constant indoor air temperature. Control disturbance is caused by external meteorological conditions, firstly by outdoor air temperature. The control action can be the change in heat transfer capacity of the radiators, whereby the indoor air temperature can be commanded back to the present value to offset the effect of the disturbance. Just the control can be a follower or of predictive type. The expected indoor air temperature can be calculated from the energy balances. These are composed of differential equations, describing dynamic equilibrium of heat transfer through the external walls, as well as heat storage in the walls and indoor air. Type of differential equations is linear, inhomogeneous, of first or second order. Solution of the differential equation results in describing the change in indoor air temperature in time as a function of outdoor air temperature. Further on, the equation determines the function of the necessary heating capacity to keep the indoor air temperature constant. By the model several heating programs can be evaluated. The physical model is shown in Fig. 1. Intermediate variable is the average temperature of the external walls. Heat conduction and convection through the walls is calculated by the difference of the indoor air temperature and of the average wall temperature by using relevant R 1 and R 2 heat resistance factors. The model is adequate when the heat transport within the building sections is neglectable, and the thermodynamic and heat transfer characteristics of the walls are identical. Thereby the model describes the heat balance of representative premises, but the results can be transferred to similar other premises, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信