利用剩余数系统和新的阿诺德变换增强图像安全性

A. N. Babatunde, Afeez Adeshina Oke, A. A. Oloyede, Aisha Oiza Bello
{"title":"利用剩余数系统和新的阿诺德变换增强图像安全性","authors":"A. N. Babatunde, Afeez Adeshina Oke, A. A. Oloyede, Aisha Oiza Bello","doi":"10.14710/JTSISKOM.2021.14038","DOIUrl":null,"url":null,"abstract":"This paper aims to improve the image scrambling and encryption effect in traditional two-dimensional discrete Arnold transform by introducing a new Residue number system (RNS) with three moduli and the New Arnold Transform. The study focuses on improving the classical discrete Arnold transform with quasi-affine properties, applying image scrambling and encryption research. The design of the method is explicit to three moduli set {2n, 2n+1+1, 2n+1-1}. These moduli set includes equalized and shapely moduli leading to the effective execution of the residue to binary converter. The study employs an arithmetic residue to the binary converter and an improved Arnold transformation algorithm. The encryption process uses MATLAB to accept a digital image input and subsequently convert the image into an RNS representation. The images are connected as a group. The resulting encrypted image uses the Arnold transformation algorithm. The encrypted image is used as input at decryption using the anti-Arnold (Reverse Arnold) transformation algorithm to convert the picture to the original RNS (original pixel value). Then the RNS was used to retransform the original RNS to its binary form. Security analysis tests, like histogram analysis, keyspace, key sensitivity, and correlation coefficient analysis, were administered on the encrypted image. Results show that the hybrid system can use the improved Arnold transform algorithm with better security and no constraint on image width and size.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced image security using residue number system and new Arnold transform\",\"authors\":\"A. N. Babatunde, Afeez Adeshina Oke, A. A. Oloyede, Aisha Oiza Bello\",\"doi\":\"10.14710/JTSISKOM.2021.14038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to improve the image scrambling and encryption effect in traditional two-dimensional discrete Arnold transform by introducing a new Residue number system (RNS) with three moduli and the New Arnold Transform. The study focuses on improving the classical discrete Arnold transform with quasi-affine properties, applying image scrambling and encryption research. The design of the method is explicit to three moduli set {2n, 2n+1+1, 2n+1-1}. These moduli set includes equalized and shapely moduli leading to the effective execution of the residue to binary converter. The study employs an arithmetic residue to the binary converter and an improved Arnold transformation algorithm. The encryption process uses MATLAB to accept a digital image input and subsequently convert the image into an RNS representation. The images are connected as a group. The resulting encrypted image uses the Arnold transformation algorithm. The encrypted image is used as input at decryption using the anti-Arnold (Reverse Arnold) transformation algorithm to convert the picture to the original RNS (original pixel value). Then the RNS was used to retransform the original RNS to its binary form. Security analysis tests, like histogram analysis, keyspace, key sensitivity, and correlation coefficient analysis, were administered on the encrypted image. Results show that the hybrid system can use the improved Arnold transform algorithm with better security and no constraint on image width and size.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2021.14038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.14038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了改善传统二维离散阿诺德变换中图像置乱和加密效果,本文引入了一种新的三模剩余数系统(RNS)和新阿诺德变换。研究重点是改进具有准仿射性质的经典离散阿诺德变换,应用图像置乱和加密研究。该方法的设计明确为三个模集{2n, 2n+1+1, 2n+1-1}。这些模集包括均等模和形模,可以有效地实现剩余二进制变换器。该研究采用了二值变换器的算术残差和改进的Arnold变换算法。加密过程使用MATLAB接受数字图像输入,随后将图像转换为RNS表示。这些图像作为一个组连接在一起。生成的加密图像使用Arnold变换算法。加密后的图像作为解密时的输入,使用反阿诺德(Reverse Arnold)变换算法将图像转换为原始RNS(原始像素值)。然后使用RNS将原始RNS重新转换为二进制形式。对加密图像进行安全分析测试,如直方图分析、键空间、键灵敏度和相关系数分析。结果表明,该混合系统可以使用改进的Arnold变换算法,具有更好的安全性,并且不受图像宽度和大小的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced image security using residue number system and new Arnold transform
This paper aims to improve the image scrambling and encryption effect in traditional two-dimensional discrete Arnold transform by introducing a new Residue number system (RNS) with three moduli and the New Arnold Transform. The study focuses on improving the classical discrete Arnold transform with quasi-affine properties, applying image scrambling and encryption research. The design of the method is explicit to three moduli set {2n, 2n+1+1, 2n+1-1}. These moduli set includes equalized and shapely moduli leading to the effective execution of the residue to binary converter. The study employs an arithmetic residue to the binary converter and an improved Arnold transformation algorithm. The encryption process uses MATLAB to accept a digital image input and subsequently convert the image into an RNS representation. The images are connected as a group. The resulting encrypted image uses the Arnold transformation algorithm. The encrypted image is used as input at decryption using the anti-Arnold (Reverse Arnold) transformation algorithm to convert the picture to the original RNS (original pixel value). Then the RNS was used to retransform the original RNS to its binary form. Security analysis tests, like histogram analysis, keyspace, key sensitivity, and correlation coefficient analysis, were administered on the encrypted image. Results show that the hybrid system can use the improved Arnold transform algorithm with better security and no constraint on image width and size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信