用氧化石墨烯金属透镜产生超分辨光学针和多焦点阵列

IF 15.3 1区 物理与天体物理 Q1 OPTICS
Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, C. Qiu, B. Jia
{"title":"用氧化石墨烯金属透镜产生超分辨光学针和多焦点阵列","authors":"Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, C. Qiu, B. Jia","doi":"10.29026/OEA.2021.200031","DOIUrl":null,"url":null,"abstract":"Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":15.3000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses\",\"authors\":\"Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, C. Qiu, B. Jia\",\"doi\":\"10.29026/OEA.2021.200031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.\",\"PeriodicalId\":19611,\"journal\":{\"name\":\"Opto-Electronic Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2021-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronic Advances\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.29026/OEA.2021.200031\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.29026/OEA.2021.200031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 29

摘要

超薄平面金属透镜已成为传统衍射透镜的有前途的替代品,为无数小型化和界面应用提供了新的可能性。基于石墨烯的材料可以在单个位置同时实现相位和振幅调制,这是由于通过从氧化石墨烯到类石墨烯材料的激光转换来改变复折射率和厚度。在这项工作中,我们开发了氧化石墨烯金属透镜,以精确控制相位和振幅调制,并实现基于石墨烯材料系统的整体和系统的透镜设计。我们通过演示两个氧化石墨烯金属套来实验验证我们的策略:一个具有超长(~16λ)光学针,另一个具有轴向多焦点,波长632.8 nm,具有200 nm薄膜。我们提出的氧化石墨烯金属套为准确设计用于广泛应用的石墨烯基超薄可集成器件提供了前所未有的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses
Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.30
自引率
7.10%
发文量
128
期刊介绍: Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments: Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact. Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research. Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide. Scope and Purpose: OEA is committed to serving as a platform for the exchange of knowledge through the publication of high-quality empirical and theoretical research papers. It covers a wide range of topics within the broad area of optics, photonics, and optoelectronics, catering to researchers, academicians, professionals, practitioners, and students alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信