具有相关误差的线性模型最小二乘估计的渐近分布:正则设计

IF 0.8 Q3 STATISTICS & PROBABILITY
E. Caron, S. Dede
{"title":"具有相关误差的线性模型最小二乘估计的渐近分布:正则设计","authors":"E. Caron, S. Dede","doi":"10.1080/02331888.2019.1593987","DOIUrl":null,"url":null,"abstract":"We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"27 1","pages":"268-293"},"PeriodicalIF":0.8000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02331888.2019.1593987","citationCount":"7","resultStr":"{\"title\":\"Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs\",\"authors\":\"E. Caron, S. Dede\",\"doi\":\"10.1080/02331888.2019.1593987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":\"27 1\",\"pages\":\"268-293\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/02331888.2019.1593987\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2019.1593987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02331888.2019.1593987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

摘要

在假设误差过程严格平稳的情况下,我们考虑通常的线性回归模型。我们利用Hannan的结果,证明了一般最小二乘估计在一般条件下的中心极限定理。我们证明,对于一大类设计,渐近协方差矩阵与独立同分布(i.i.d)情况一样简单。然后,我们使用谱密度估计器估计协方差矩阵,该估计器在非常温和的条件下证明了一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs
We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信