H. Hosseinpour, Seyed A. Moosavie nia, M. Pourmina
{"title":"基于渐隐异常值的FTV系统深度改进","authors":"H. Hosseinpour, Seyed A. Moosavie nia, M. Pourmina","doi":"10.22044/JADM.2019.7278.1864","DOIUrl":null,"url":null,"abstract":"Virtual view synthesis is an essential part of computer vision and 3D applications. A high-quality depth map is the main problem with virtual view synthesis. Because as compared to the color image the resolution of the corresponding depth image is low. In this paper, an efficient and confided method based on the gradual omission of outliers is proposed to compute reliable depth values. In the proposed method depth values that are far from the mean of depth values are omitted gradually. By comparison with other state of the art methods, simulation results show that on average, PSNR is 2.5dB (8.1 %) higher, SSIM is 0.028 (3%) more, UNIQUE is 0.021 (2.4%) more, the running time is 8.6s (6.1%) less and wrong pixels are 1.97(24.8%) less.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth Improvement for FTV Systems Based on the Gradual Omission of Outliers\",\"authors\":\"H. Hosseinpour, Seyed A. Moosavie nia, M. Pourmina\",\"doi\":\"10.22044/JADM.2019.7278.1864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual view synthesis is an essential part of computer vision and 3D applications. A high-quality depth map is the main problem with virtual view synthesis. Because as compared to the color image the resolution of the corresponding depth image is low. In this paper, an efficient and confided method based on the gradual omission of outliers is proposed to compute reliable depth values. In the proposed method depth values that are far from the mean of depth values are omitted gradually. By comparison with other state of the art methods, simulation results show that on average, PSNR is 2.5dB (8.1 %) higher, SSIM is 0.028 (3%) more, UNIQUE is 0.021 (2.4%) more, the running time is 8.6s (6.1%) less and wrong pixels are 1.97(24.8%) less.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2019.7278.1864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.7278.1864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Depth Improvement for FTV Systems Based on the Gradual Omission of Outliers
Virtual view synthesis is an essential part of computer vision and 3D applications. A high-quality depth map is the main problem with virtual view synthesis. Because as compared to the color image the resolution of the corresponding depth image is low. In this paper, an efficient and confided method based on the gradual omission of outliers is proposed to compute reliable depth values. In the proposed method depth values that are far from the mean of depth values are omitted gradually. By comparison with other state of the art methods, simulation results show that on average, PSNR is 2.5dB (8.1 %) higher, SSIM is 0.028 (3%) more, UNIQUE is 0.021 (2.4%) more, the running time is 8.6s (6.1%) less and wrong pixels are 1.97(24.8%) less.