利用粒子群对COVID-19病例预测向量支持回归机超参数的优化

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Norbey Danilo Muñoz-Cañón, Jairo Andrés Romero-Triana
{"title":"利用粒子群对COVID-19病例预测向量支持回归机超参数的优化","authors":"Norbey Danilo Muñoz-Cañón, Jairo Andrés Romero-Triana","doi":"10.18273/revuin.v20n2-2021015","DOIUrl":null,"url":null,"abstract":"En este trabajo se propone un método para la optimización de los hiperparámetros de una máquina de regresión de soporte vectorial mediante la adaptación de la metaheurística de enjambre de partículas. El método se utiliza para pronosticar la serie de tiempo del total de casos positivos acumulados de la reciente enfermedad COVID-19 en la ciudad de Bogotá, Colombia. Para validar el rendimiento del método se establece una comparación con la máquina de regresión de soporte vectorial sin hiperparámetros optimizados, en términos de métricas de medición del rendimiento como lo son el error cuadrático medio, error absoluto medio y el coeficiente de determinación. Con un valor en el error cuadrático medio de 0,000045, un coeficiente de determinación de 0,998884 y el valor-p de 0,0015, para la prueba no paramétrica de Wilcoxon, el método propuesto presenta un mejor desempeño en el pronóstico. Finalmente se pone a discusión la aplicabilidad de este tipo de métodos en el pronóstico de casos en las epidemias.","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimización de los hiperparámetros de una máquina de regresión de soporte vectorial utilizando enjambre de partículas para el pronóstico de casos de COVID-19\",\"authors\":\"Norbey Danilo Muñoz-Cañón, Jairo Andrés Romero-Triana\",\"doi\":\"10.18273/revuin.v20n2-2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este trabajo se propone un método para la optimización de los hiperparámetros de una máquina de regresión de soporte vectorial mediante la adaptación de la metaheurística de enjambre de partículas. El método se utiliza para pronosticar la serie de tiempo del total de casos positivos acumulados de la reciente enfermedad COVID-19 en la ciudad de Bogotá, Colombia. Para validar el rendimiento del método se establece una comparación con la máquina de regresión de soporte vectorial sin hiperparámetros optimizados, en términos de métricas de medición del rendimiento como lo son el error cuadrático medio, error absoluto medio y el coeficiente de determinación. Con un valor en el error cuadrático medio de 0,000045, un coeficiente de determinación de 0,998884 y el valor-p de 0,0015, para la prueba no paramétrica de Wilcoxon, el método propuesto presenta un mejor desempeño en el pronóstico. Finalmente se pone a discusión la aplicabilidad de este tipo de métodos en el pronóstico de casos en las epidemias.\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v20n2-2021015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v20n2-2021015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用粒子群元启发式优化向量支持回归机超参数的方法。该方法用于预测哥伦比亚bogota市近期COVID-19累计阳性病例总数的时间序列。为了验证该方法的性能,我们与没有优化超参数的向量支持回归机进行了比较,从平均二次误差、平均绝对误差和决定系数等性能度量指标进行了比较。在非参数Wilcoxon检验中,该方法的平均二次误差为0.000045,确定系数为0.998884,p值为0.0015,具有较好的预测性能。最后,讨论了这些方法在流行病病例预测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimización de los hiperparámetros de una máquina de regresión de soporte vectorial utilizando enjambre de partículas para el pronóstico de casos de COVID-19
En este trabajo se propone un método para la optimización de los hiperparámetros de una máquina de regresión de soporte vectorial mediante la adaptación de la metaheurística de enjambre de partículas. El método se utiliza para pronosticar la serie de tiempo del total de casos positivos acumulados de la reciente enfermedad COVID-19 en la ciudad de Bogotá, Colombia. Para validar el rendimiento del método se establece una comparación con la máquina de regresión de soporte vectorial sin hiperparámetros optimizados, en términos de métricas de medición del rendimiento como lo son el error cuadrático medio, error absoluto medio y el coeficiente de determinación. Con un valor en el error cuadrático medio de 0,000045, un coeficiente de determinación de 0,998884 y el valor-p de 0,0015, para la prueba no paramétrica de Wilcoxon, el método propuesto presenta un mejor desempeño en el pronóstico. Finalmente se pone a discusión la aplicabilidad de este tipo de métodos en el pronóstico de casos en las epidemias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
UIS Ingenierias
UIS Ingenierias ENGINEERING, MULTIDISCIPLINARY-
自引率
33.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信