{"title":"PollenNet -一个预测空气中花粉浓度的深度学习方法","authors":"Rebeka Čorić, Domagoj Matijevic, Darija Markovic","doi":"10.17535/crorr.2023.0001","DOIUrl":null,"url":null,"abstract":"The accurate short-term forecasting of daily airborne pollen concentrations is of great importance in public health. Various machine learning and statistical techniques have been employed to predict these concentrations. In this paper, an RNN-based method called PollenNet is introduced, which is capable of predicting the average daily pollen concentrations for three types of pollen: ragweed (Ambrosia), birch (Betula), and grass (Poaceae). Moreover, two strategies incorporating measurement errors during the training phase are introduced, making the method more robust. The data for experiments were obtained from the RealForAll project, where pollen concentrations were gathered using a Hirst-type 7-day volumetric spore trap.Additionally, five types of meteorological data were utilized as input variables. The results of our study demonstrate that the proposed method outperforms standard models typically used for predicting pollen concentrations, specifically the pollen calendar method, pollen predictions based on patterns, and the naive approach.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PollenNet - a deep learning approach to predicting airborne pollen concentrations\",\"authors\":\"Rebeka Čorić, Domagoj Matijevic, Darija Markovic\",\"doi\":\"10.17535/crorr.2023.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate short-term forecasting of daily airborne pollen concentrations is of great importance in public health. Various machine learning and statistical techniques have been employed to predict these concentrations. In this paper, an RNN-based method called PollenNet is introduced, which is capable of predicting the average daily pollen concentrations for three types of pollen: ragweed (Ambrosia), birch (Betula), and grass (Poaceae). Moreover, two strategies incorporating measurement errors during the training phase are introduced, making the method more robust. The data for experiments were obtained from the RealForAll project, where pollen concentrations were gathered using a Hirst-type 7-day volumetric spore trap.Additionally, five types of meteorological data were utilized as input variables. The results of our study demonstrate that the proposed method outperforms standard models typically used for predicting pollen concentrations, specifically the pollen calendar method, pollen predictions based on patterns, and the naive approach.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2023.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2023.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
PollenNet - a deep learning approach to predicting airborne pollen concentrations
The accurate short-term forecasting of daily airborne pollen concentrations is of great importance in public health. Various machine learning and statistical techniques have been employed to predict these concentrations. In this paper, an RNN-based method called PollenNet is introduced, which is capable of predicting the average daily pollen concentrations for three types of pollen: ragweed (Ambrosia), birch (Betula), and grass (Poaceae). Moreover, two strategies incorporating measurement errors during the training phase are introduced, making the method more robust. The data for experiments were obtained from the RealForAll project, where pollen concentrations were gathered using a Hirst-type 7-day volumetric spore trap.Additionally, five types of meteorological data were utilized as input variables. The results of our study demonstrate that the proposed method outperforms standard models typically used for predicting pollen concentrations, specifically the pollen calendar method, pollen predictions based on patterns, and the naive approach.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.