一类外域无界系数算子椭圆型方程的径向解

Pub Date : 2022-12-11 DOI:10.12775/tmna.2022.026
Anderson L. A. de Araujo, Luiz F. O. Faria, S. Alarcón, Leonelo Iturriaga
{"title":"一类外域无界系数算子椭圆型方程的径向解","authors":"Anderson L. A. de Araujo, Luiz F. O. Faria, S. Alarcón, Leonelo Iturriaga","doi":"10.12775/tmna.2022.026","DOIUrl":null,"url":null,"abstract":"We study existence and multiplicity of radial solutions for some quasilinear elliptic\n problems involving the operator $L_N=\\Delta - x\\cdot \\nabla$ on\n$\\mathbb{R}^N\\setminus B_1$, where $\\Delta$ is the Laplacian,\n $x\\cdot \\nabla$ is an unbounded drift term, $N\\geq 3$ and $B_1$ is the unit ball centered at the origin.\nWe consider: (i) Eigenvalue problems, and (ii) Problems involving a nonlinearity of concave and convex type. On the first class of problems we get a compact\n embedding result, whereas on the second, we address the well-known question\nof Ambrosetti, Brezis and Cerami from 1993 concerning the existence of two positive\n solutions for some problems involving the supercritical Sobolev exponent in symmetric domains for the Laplacian. Specifically, we provide\\linebreak a new approach of\n answering the ABC-question for elliptic problems with unbounded coefficients in\n exterior domains and we find asymptotic properties of the radial solutions. Furthermore, we study the limit case, namely when nonlinearity involves\na sublinear term and a linear term. As far as we know, this is the first work that deals with such a case, even for the Laplacian. In our approach,\n we use both topological and variational arguments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains\",\"authors\":\"Anderson L. A. de Araujo, Luiz F. O. Faria, S. Alarcón, Leonelo Iturriaga\",\"doi\":\"10.12775/tmna.2022.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study existence and multiplicity of radial solutions for some quasilinear elliptic\\n problems involving the operator $L_N=\\\\Delta - x\\\\cdot \\\\nabla$ on\\n$\\\\mathbb{R}^N\\\\setminus B_1$, where $\\\\Delta$ is the Laplacian,\\n $x\\\\cdot \\\\nabla$ is an unbounded drift term, $N\\\\geq 3$ and $B_1$ is the unit ball centered at the origin.\\nWe consider: (i) Eigenvalue problems, and (ii) Problems involving a nonlinearity of concave and convex type. On the first class of problems we get a compact\\n embedding result, whereas on the second, we address the well-known question\\nof Ambrosetti, Brezis and Cerami from 1993 concerning the existence of two positive\\n solutions for some problems involving the supercritical Sobolev exponent in symmetric domains for the Laplacian. Specifically, we provide\\\\linebreak a new approach of\\n answering the ABC-question for elliptic problems with unbounded coefficients in\\n exterior domains and we find asymptotic properties of the radial solutions. Furthermore, we study the limit case, namely when nonlinearity involves\\na sublinear term and a linear term. As far as we know, this is the first work that deals with such a case, even for the Laplacian. In our approach,\\n we use both topological and variational arguments.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类拟线性椭圆问题径向解的存在性和多重性,这些问题涉及算子$L_N=\Delta-x\cdot\nabla$在$\mathbb{R}^N\setminus B_1$上,其中$\Delta$是拉普拉斯算子,$x\cdot\napla$是无界漂移项,$N\geq3$和$B_1$是以原点为中心的单位球。我们考虑:(i)特征值问题,和(ii)涉及凹凸型非线性的问题。在第一类问题上,我们得到了一个紧凑的嵌入结果,而在第二类问题中,我们解决了1993年Ambrosetti、Brezis和Cerami的著名问题,即拉普拉斯算子在对称域中涉及超临界Sobolev指数的一些问题的两个正解的存在性。具体地说,我们提供了一种新的方法来回答外域中系数无界的椭圆问题的ABC问题,并发现了径向解的渐近性质。此外,我们还研究了非线性包含次线性项和线性项的极限情况。据我们所知,这是第一个处理这种情况的工作,即使对于拉普拉斯算子也是如此。在我们的方法中,我们同时使用拓扑和变分自变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains
We study existence and multiplicity of radial solutions for some quasilinear elliptic problems involving the operator $L_N=\Delta - x\cdot \nabla$ on $\mathbb{R}^N\setminus B_1$, where $\Delta$ is the Laplacian, $x\cdot \nabla$ is an unbounded drift term, $N\geq 3$ and $B_1$ is the unit ball centered at the origin. We consider: (i) Eigenvalue problems, and (ii) Problems involving a nonlinearity of concave and convex type. On the first class of problems we get a compact embedding result, whereas on the second, we address the well-known question of Ambrosetti, Brezis and Cerami from 1993 concerning the existence of two positive solutions for some problems involving the supercritical Sobolev exponent in symmetric domains for the Laplacian. Specifically, we provide\linebreak a new approach of answering the ABC-question for elliptic problems with unbounded coefficients in exterior domains and we find asymptotic properties of the radial solutions. Furthermore, we study the limit case, namely when nonlinearity involves a sublinear term and a linear term. As far as we know, this is the first work that deals with such a case, even for the Laplacian. In our approach, we use both topological and variational arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信