多维切比雪夫多项式:一种非常规方法

IF 0.3 Q4 MATHEMATICS
C. Cesarano
{"title":"多维切比雪夫多项式:一种非常规方法","authors":"C. Cesarano","doi":"10.1515/caim-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract Chebyshev polynomials are traditionally applied to the approximation theory where are used in polynomial interpolation and also in the study of di erential equations, in particular in some special cases of Sturm-Liouville di erential equation. Many of the operational techniques presented, by using suitable integral transforms, via a symbolic approach to the Laplace transform, allow us to introduce polynomials recognized belonging to the families of Chebyshev of multi-dimensional type. The non-standard approach come out from the theory of multi-index Hermite polynomials, in particular by using the concepts and the related formalism of translation operators.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"10 1","pages":"1 - 19"},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-Dimensional Chebyshev Polynomials: A Non-Conventional Approach\",\"authors\":\"C. Cesarano\",\"doi\":\"10.1515/caim-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Chebyshev polynomials are traditionally applied to the approximation theory where are used in polynomial interpolation and also in the study of di erential equations, in particular in some special cases of Sturm-Liouville di erential equation. Many of the operational techniques presented, by using suitable integral transforms, via a symbolic approach to the Laplace transform, allow us to introduce polynomials recognized belonging to the families of Chebyshev of multi-dimensional type. The non-standard approach come out from the theory of multi-index Hermite polynomials, in particular by using the concepts and the related formalism of translation operators.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"10 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

摘要Chebyshev多项式传统上应用于逼近理论,用于多项式插值和微分方程的研究,特别是在Sturm-Liouville微分方程的一些特殊情况下。通过使用适当的积分变换,通过拉普拉斯变换的符号方法,所提出的许多运算技术允许我们引入被识别为属于多维类型的切比雪夫族的多项式。非标准方法来源于多指标埃尔米特多项式理论,特别是使用了平移算子的概念和相关形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Dimensional Chebyshev Polynomials: A Non-Conventional Approach
Abstract Chebyshev polynomials are traditionally applied to the approximation theory where are used in polynomial interpolation and also in the study of di erential equations, in particular in some special cases of Sturm-Liouville di erential equation. Many of the operational techniques presented, by using suitable integral transforms, via a symbolic approach to the Laplace transform, allow us to introduce polynomials recognized belonging to the families of Chebyshev of multi-dimensional type. The non-standard approach come out from the theory of multi-index Hermite polynomials, in particular by using the concepts and the related formalism of translation operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信