{"title":"布思算法在整数加减运算中的应用","authors":"J. A. Pérez","doi":"10.17993/3ctic.2017.63.1-9","DOIUrl":null,"url":null,"abstract":"espanolEl algoritmo dado por Andrew Donald Booth en 1950 (Booth, 1951) para la multiplicacion es considerablemente potente como para limitar su uso unicamente a dicha operacion, se puede aplicar a cualquier operacion algebraica que se construya como una sucesion de computos de otra operacion que la compone (Ayuso 2015, pp. 113-119). De ahi que en el presente documento, se proponga una implementacion fisica de suma y resta de numeros enteros basado en dicho concepto. Se vera una alternativa al hardware tradicional basado en celdas FULL-ADDER y FULL-SUBTRACTOR, describiendo un nuevo tipo de celdas, que seran designados como FULL-SUCCESSOR y FULL-PREDECESSOR, fruto de llevarnos a nivel fisico la tecnica de Booth para implementar la suma o resta de 2 numeros enteros. EnglishThe algorithm given by Andrew Donald Booth in 1950 (Booth, 1951) for multiplication is considerably powerful to limit its use to only one operation of the word, any operation can be applied that is constructed as a succession of computations of another operation that the compone (Ayuso 2015, pp. 113-119). Hence, in this paper, a physical implementation of addition and subtraction of integers based on this concept is proposed. You will see an alternative to traditional hardware based on FULL-ADDER and FULL-SUBTRACTOR cells, describing a new type of cells, which have been designated as FULL-SUCCESSOR and FULL-PREDECESSOR, the result of carrying out a physical level of Booth's technique for implement the addition or subtraction of 2 integers.","PeriodicalId":40869,"journal":{"name":"3C Tic","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algoritmo de Booth en operaciones de suma y resta de enteros\",\"authors\":\"J. A. Pérez\",\"doi\":\"10.17993/3ctic.2017.63.1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"espanolEl algoritmo dado por Andrew Donald Booth en 1950 (Booth, 1951) para la multiplicacion es considerablemente potente como para limitar su uso unicamente a dicha operacion, se puede aplicar a cualquier operacion algebraica que se construya como una sucesion de computos de otra operacion que la compone (Ayuso 2015, pp. 113-119). De ahi que en el presente documento, se proponga una implementacion fisica de suma y resta de numeros enteros basado en dicho concepto. Se vera una alternativa al hardware tradicional basado en celdas FULL-ADDER y FULL-SUBTRACTOR, describiendo un nuevo tipo de celdas, que seran designados como FULL-SUCCESSOR y FULL-PREDECESSOR, fruto de llevarnos a nivel fisico la tecnica de Booth para implementar la suma o resta de 2 numeros enteros. EnglishThe algorithm given by Andrew Donald Booth in 1950 (Booth, 1951) for multiplication is considerably powerful to limit its use to only one operation of the word, any operation can be applied that is constructed as a succession of computations of another operation that the compone (Ayuso 2015, pp. 113-119). Hence, in this paper, a physical implementation of addition and subtraction of integers based on this concept is proposed. You will see an alternative to traditional hardware based on FULL-ADDER and FULL-SUBTRACTOR cells, describing a new type of cells, which have been designated as FULL-SUCCESSOR and FULL-PREDECESSOR, the result of carrying out a physical level of Booth's technique for implement the addition or subtraction of 2 integers.\",\"PeriodicalId\":40869,\"journal\":{\"name\":\"3C Tic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Tic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2017.63.1-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Tic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2017.63.1-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
安德鲁·唐纳德·布斯(Andrew Donald Booth)在1950年(Booth,1951年)给出的乘法西班牙算法非常强大,可以将其仅用于该运算,它可以应用于任何构造为另一个组成该运算的运算的连续计算的代数运算(Ayuso 2015,第113-119页)。因此,在本文中,提出了基于这一概念的整数加减的物理实现。将看到一种基于全加法器和全减法器单元的传统硬件的替代方案,描述了一种新类型的单元,这些单元将被指定为全继承器和全预测器,这是将Booth技术应用于物理层面以实现2个整数的加或减的结果。安德鲁·唐纳德·布斯(Andrew Donald Booth)在1950年(Booth,1951年)给出的乘法算法非常强大,可以将其使用限制在单词的一个操作中,任何操作都可以应用于构造为另一个操作的连续计算,该操作由其组成(Ayuso 2015,第113-119页)。因此,在本文中,提出了基于这一概念的整数加法和减法的物理实现。您将看到一种基于全加法器和全减法器单元的传统硬件的替代方案,描述了一种被指定为全成功和全预测器的新型单元,这是执行Booth的物理级别技术以实现2个整数的添加或减法的结果。
Algoritmo de Booth en operaciones de suma y resta de enteros
espanolEl algoritmo dado por Andrew Donald Booth en 1950 (Booth, 1951) para la multiplicacion es considerablemente potente como para limitar su uso unicamente a dicha operacion, se puede aplicar a cualquier operacion algebraica que se construya como una sucesion de computos de otra operacion que la compone (Ayuso 2015, pp. 113-119). De ahi que en el presente documento, se proponga una implementacion fisica de suma y resta de numeros enteros basado en dicho concepto. Se vera una alternativa al hardware tradicional basado en celdas FULL-ADDER y FULL-SUBTRACTOR, describiendo un nuevo tipo de celdas, que seran designados como FULL-SUCCESSOR y FULL-PREDECESSOR, fruto de llevarnos a nivel fisico la tecnica de Booth para implementar la suma o resta de 2 numeros enteros. EnglishThe algorithm given by Andrew Donald Booth in 1950 (Booth, 1951) for multiplication is considerably powerful to limit its use to only one operation of the word, any operation can be applied that is constructed as a succession of computations of another operation that the compone (Ayuso 2015, pp. 113-119). Hence, in this paper, a physical implementation of addition and subtraction of integers based on this concept is proposed. You will see an alternative to traditional hardware based on FULL-ADDER and FULL-SUBTRACTOR cells, describing a new type of cells, which have been designated as FULL-SUCCESSOR and FULL-PREDECESSOR, the result of carrying out a physical level of Booth's technique for implement the addition or subtraction of 2 integers.