İmren Esentürk-Güzel, Lüceyn Abdo, Evren Alğın Yapar, Engin Esentürk, Derya Büyükkayhan, Rakesh K. Sindhu
{"title":"纳米纤维在植物药物开发中的应用综述","authors":"İmren Esentürk-Güzel, Lüceyn Abdo, Evren Alğın Yapar, Engin Esentürk, Derya Büyükkayhan, Rakesh K. Sindhu","doi":"10.14235/bas.galenos.2022.30502","DOIUrl":null,"url":null,"abstract":"Herbal sources contain a variety of bio-actives, which are also called phytochemicals. Many of the herbal bio-actives have therapeutic effects and distinguished chemical properties that allow them favorable candidates for phytomedicines. The history of traditional herbal medicines, which are the precursors of phytopharmaceuticals, dates back to ancient times. Today, many of the officially approved and widely used medicines are produced by isolating active substances from herbal sources. Although traditional pharmaceutical dosage forms such as tablets, capsules, syrups, solutions, decoctions and ointments are still used today, problems related with the absorption, biotransformation and stability of phytochemicals reduces the efficacy, bioavailability and in some cases safety of herbal medicines. Also, conventional pharmaceutical dosage forms are often providing an immediate release of phytoconstituents. Besides the use of advanced drug delivery systems offer advantages to overcome mentioned problems, they also provide extended release with maximum efficacy associated with minimum side effects. Researches on development of herbal formulations by using novel drug delivery systems have gain attention and the use of nanotechnology-based a huge potential to improve in vivo simulated tests in drug development studies (9). Additionally, nanofibers play an important role in the field of regenerative medicine, which can recover important tissues such as heart, blood vessels, nerves, bones, cartilages, tendons, and joints. This is possible with the combination of 3D printing and electrospinning techniques to form biomimicking nanofiber scaffolds and patches loaded with stem cells (9,10). The unique specifications of nanofibers have made them widely used in treatment of different diseases such as infections, allergy, hypertension, rheumatic diseases, inflammatory autoimmune diseases, diabetes, intracranial aneurism, Alzheimer’s, cardiovascular diseases, gastrointestinal diseases, AIDS, and cancers (11,12). Mechanical properties of nanofibers such as high surface area-to-volume ratio, high porosity, amorphous structure, and flexibility of the nanofiber-based carrier systems to deliver herbal bio-actives through various drug application routes is overviewed.","PeriodicalId":8757,"journal":{"name":"Bezmialem Science","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Nanofiber Applications for Development of Phytopharmaceuticals\",\"authors\":\"İmren Esentürk-Güzel, Lüceyn Abdo, Evren Alğın Yapar, Engin Esentürk, Derya Büyükkayhan, Rakesh K. Sindhu\",\"doi\":\"10.14235/bas.galenos.2022.30502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herbal sources contain a variety of bio-actives, which are also called phytochemicals. Many of the herbal bio-actives have therapeutic effects and distinguished chemical properties that allow them favorable candidates for phytomedicines. The history of traditional herbal medicines, which are the precursors of phytopharmaceuticals, dates back to ancient times. Today, many of the officially approved and widely used medicines are produced by isolating active substances from herbal sources. Although traditional pharmaceutical dosage forms such as tablets, capsules, syrups, solutions, decoctions and ointments are still used today, problems related with the absorption, biotransformation and stability of phytochemicals reduces the efficacy, bioavailability and in some cases safety of herbal medicines. Also, conventional pharmaceutical dosage forms are often providing an immediate release of phytoconstituents. Besides the use of advanced drug delivery systems offer advantages to overcome mentioned problems, they also provide extended release with maximum efficacy associated with minimum side effects. Researches on development of herbal formulations by using novel drug delivery systems have gain attention and the use of nanotechnology-based a huge potential to improve in vivo simulated tests in drug development studies (9). Additionally, nanofibers play an important role in the field of regenerative medicine, which can recover important tissues such as heart, blood vessels, nerves, bones, cartilages, tendons, and joints. This is possible with the combination of 3D printing and electrospinning techniques to form biomimicking nanofiber scaffolds and patches loaded with stem cells (9,10). The unique specifications of nanofibers have made them widely used in treatment of different diseases such as infections, allergy, hypertension, rheumatic diseases, inflammatory autoimmune diseases, diabetes, intracranial aneurism, Alzheimer’s, cardiovascular diseases, gastrointestinal diseases, AIDS, and cancers (11,12). Mechanical properties of nanofibers such as high surface area-to-volume ratio, high porosity, amorphous structure, and flexibility of the nanofiber-based carrier systems to deliver herbal bio-actives through various drug application routes is overviewed.\",\"PeriodicalId\":8757,\"journal\":{\"name\":\"Bezmialem Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezmialem Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14235/bas.galenos.2022.30502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezmialem Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14235/bas.galenos.2022.30502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
An Overview of Nanofiber Applications for Development of Phytopharmaceuticals
Herbal sources contain a variety of bio-actives, which are also called phytochemicals. Many of the herbal bio-actives have therapeutic effects and distinguished chemical properties that allow them favorable candidates for phytomedicines. The history of traditional herbal medicines, which are the precursors of phytopharmaceuticals, dates back to ancient times. Today, many of the officially approved and widely used medicines are produced by isolating active substances from herbal sources. Although traditional pharmaceutical dosage forms such as tablets, capsules, syrups, solutions, decoctions and ointments are still used today, problems related with the absorption, biotransformation and stability of phytochemicals reduces the efficacy, bioavailability and in some cases safety of herbal medicines. Also, conventional pharmaceutical dosage forms are often providing an immediate release of phytoconstituents. Besides the use of advanced drug delivery systems offer advantages to overcome mentioned problems, they also provide extended release with maximum efficacy associated with minimum side effects. Researches on development of herbal formulations by using novel drug delivery systems have gain attention and the use of nanotechnology-based a huge potential to improve in vivo simulated tests in drug development studies (9). Additionally, nanofibers play an important role in the field of regenerative medicine, which can recover important tissues such as heart, blood vessels, nerves, bones, cartilages, tendons, and joints. This is possible with the combination of 3D printing and electrospinning techniques to form biomimicking nanofiber scaffolds and patches loaded with stem cells (9,10). The unique specifications of nanofibers have made them widely used in treatment of different diseases such as infections, allergy, hypertension, rheumatic diseases, inflammatory autoimmune diseases, diabetes, intracranial aneurism, Alzheimer’s, cardiovascular diseases, gastrointestinal diseases, AIDS, and cancers (11,12). Mechanical properties of nanofibers such as high surface area-to-volume ratio, high porosity, amorphous structure, and flexibility of the nanofiber-based carrier systems to deliver herbal bio-actives through various drug application routes is overviewed.