贝叶斯混合效应多光子响应模型及其在不同种群协作(DPC)数据中的应用

Fang Yang, X. Niu, Jianchang Lin
{"title":"贝叶斯混合效应多光子响应模型及其在不同种群协作(DPC)数据中的应用","authors":"Fang Yang, X. Niu, Jianchang Lin","doi":"10.4172/2155-6180.1000346","DOIUrl":null,"url":null,"abstract":"Polychotomous response models are commonly used in the clinical trials to analyze categorical or ordinal response data. Motivated by investigating of relationship between BMI categories and several risk factors, we carry out the application studies to examine the impact of risk factors on BMI categories, especially for categories of “Overweight” and “Obesities”. In this study, we apply the Bayesian methodology through a mixed-effects polychotomous response model to the Diverse Population Collaboration (DPC) dataset. Using the mixed-effects Bayesian polychotomous response model with uniform improper priors, we would get similar interpretations of the association between risk factors and BMI, which are in great agreement with the results documented in literature. Our application showed that the Bayesian mixed-effects polychotomous response model with improper priors is a very useful statistical technique for solving real word problems.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000346","citationCount":"1","resultStr":"{\"title\":\"Bayesian Mixed-effects Polychotomous Response Model with Applicationto Diverse Population Collaboration (DPC) Data\",\"authors\":\"Fang Yang, X. Niu, Jianchang Lin\",\"doi\":\"10.4172/2155-6180.1000346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polychotomous response models are commonly used in the clinical trials to analyze categorical or ordinal response data. Motivated by investigating of relationship between BMI categories and several risk factors, we carry out the application studies to examine the impact of risk factors on BMI categories, especially for categories of “Overweight” and “Obesities”. In this study, we apply the Bayesian methodology through a mixed-effects polychotomous response model to the Diverse Population Collaboration (DPC) dataset. Using the mixed-effects Bayesian polychotomous response model with uniform improper priors, we would get similar interpretations of the association between risk factors and BMI, which are in great agreement with the results documented in literature. Our application showed that the Bayesian mixed-effects polychotomous response model with improper priors is a very useful statistical technique for solving real word problems.\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2155-6180.1000346\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6180.1000346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多光子反应模型通常用于临床试验,以分析分类或顺序反应数据。在调查BMI类别与几种风险因素之间关系的基础上,我们进行了应用研究,以检验风险因素对BMI类别的影响,特别是对“超重”和“肥胖”类别的影响。在本研究中,我们通过混合效应多分类反应模型将贝叶斯方法应用于多样化群体协作(DPC)数据集。使用具有统一不当先验的混合效应贝叶斯多分类反应模型,我们可以对风险因素与BMI之间的关联做出类似的解释,这与文献中的结果非常一致。我们的应用表明,具有不适当先验的贝叶斯混合效应多分类响应模型是解决实际单词问题的一种非常有用的统计技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Mixed-effects Polychotomous Response Model with Applicationto Diverse Population Collaboration (DPC) Data
Polychotomous response models are commonly used in the clinical trials to analyze categorical or ordinal response data. Motivated by investigating of relationship between BMI categories and several risk factors, we carry out the application studies to examine the impact of risk factors on BMI categories, especially for categories of “Overweight” and “Obesities”. In this study, we apply the Bayesian methodology through a mixed-effects polychotomous response model to the Diverse Population Collaboration (DPC) dataset. Using the mixed-effects Bayesian polychotomous response model with uniform improper priors, we would get similar interpretations of the association between risk factors and BMI, which are in great agreement with the results documented in literature. Our application showed that the Bayesian mixed-effects polychotomous response model with improper priors is a very useful statistical technique for solving real word problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信