使用P4功能的1D CNN物联网异常检测

Gereltsetseg Altangerel, M. Tejfel, Enkhtur Tsogbaatar
{"title":"使用P4功能的1D CNN物联网异常检测","authors":"Gereltsetseg Altangerel, M. Tejfel, Enkhtur Tsogbaatar","doi":"10.2478/aei-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Although the Internet of Things (IoT) is a rapidly developing technology, it also brings a number of security challenges, such as IoT attacks. Currently, research on IoT anomaly detection in Software-Defined Networking (SDN) relies only on the control plane. In this study, we aim to detect IoT anomalies by covering the advantages of the control and data plane. First, we collected real-time network telemetry data from the data plane based on the capabilities of the P4. Then, using this telemetry data, we built different anomaly detection models and compared their performance. Among them, the one-Dimensional Convolutional Neural Network (1D CNN) model classified our data best and showed the highest performance, so we proposed this model for IoT anomaly detection on the control plane. To our knowledge, our approach is the first solution that integrates the control plane and data plane for IoT anomaly detection. Finally, when evaluating the performance of our proposed 1D CNN model, the accuracy, F1 score, and Matthews correlation coefficient (MCC) are the same or better than existing studies.","PeriodicalId":31657,"journal":{"name":"Acta Electrotechnica et Informatica","volume":"23 1","pages":"3 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT Anomaly Detection with 1D CNN Using P4 Capabilities\",\"authors\":\"Gereltsetseg Altangerel, M. Tejfel, Enkhtur Tsogbaatar\",\"doi\":\"10.2478/aei-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although the Internet of Things (IoT) is a rapidly developing technology, it also brings a number of security challenges, such as IoT attacks. Currently, research on IoT anomaly detection in Software-Defined Networking (SDN) relies only on the control plane. In this study, we aim to detect IoT anomalies by covering the advantages of the control and data plane. First, we collected real-time network telemetry data from the data plane based on the capabilities of the P4. Then, using this telemetry data, we built different anomaly detection models and compared their performance. Among them, the one-Dimensional Convolutional Neural Network (1D CNN) model classified our data best and showed the highest performance, so we proposed this model for IoT anomaly detection on the control plane. To our knowledge, our approach is the first solution that integrates the control plane and data plane for IoT anomaly detection. Finally, when evaluating the performance of our proposed 1D CNN model, the accuracy, F1 score, and Matthews correlation coefficient (MCC) are the same or better than existing studies.\",\"PeriodicalId\":31657,\"journal\":{\"name\":\"Acta Electrotechnica et Informatica\",\"volume\":\"23 1\",\"pages\":\"3 - 12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Electrotechnica et Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aei-2023-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Electrotechnica et Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aei-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要物联网(IoT)是一项快速发展的技术,但它也带来了许多安全挑战,例如物联网攻击。目前,软件定义网络(SDN)中物联网异常检测的研究仅依赖于控制平面。在本研究中,我们的目标是通过覆盖控制和数据平面的优势来检测物联网异常。首先,我们基于P4的功能从数据平面收集实时网络遥测数据。然后,利用这些遥测数据,我们建立了不同的异常检测模型,并比较了它们的性能。其中一维卷积神经网络(1D CNN)模型对我们的数据分类效果最好,表现出最高的性能,因此我们提出该模型用于控制平面的物联网异常检测。据我们所知,我们的方法是第一个将控制平面和数据平面集成在物联网异常检测中的解决方案。最后,在评估我们提出的1D CNN模型的性能时,准确率、F1分数和Matthews相关系数(MCC)与现有研究相同或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Anomaly Detection with 1D CNN Using P4 Capabilities
Abstract Although the Internet of Things (IoT) is a rapidly developing technology, it also brings a number of security challenges, such as IoT attacks. Currently, research on IoT anomaly detection in Software-Defined Networking (SDN) relies only on the control plane. In this study, we aim to detect IoT anomalies by covering the advantages of the control and data plane. First, we collected real-time network telemetry data from the data plane based on the capabilities of the P4. Then, using this telemetry data, we built different anomaly detection models and compared their performance. Among them, the one-Dimensional Convolutional Neural Network (1D CNN) model classified our data best and showed the highest performance, so we proposed this model for IoT anomaly detection on the control plane. To our knowledge, our approach is the first solution that integrates the control plane and data plane for IoT anomaly detection. Finally, when evaluating the performance of our proposed 1D CNN model, the accuracy, F1 score, and Matthews correlation coefficient (MCC) are the same or better than existing studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信