紧射影流形上的超临界变形厄米杨-米尔斯方程

IF 0.6 Q3 MATHEMATICS
A. Ballal
{"title":"紧射影流形上的超临界变形厄米杨-米尔斯方程","authors":"A. Ballal","doi":"10.1215/00192082-10417484","DOIUrl":null,"url":null,"abstract":"In this paper, we extend a result of Gao Chen regarding the solvability of the twisted deformed Hermitian Yang-Mills equations on compact K\\\"ahler manifolds to allow for the twisting function to be non-constant and slightly negative in all dimensions. Using this result, we prove that the twisted supercritical dHYM equation on compact, projective manifolds can be solved provided certain numerical conditions are satisfied.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The supercritical deformed Hermitian Yang–Mills equation on compact projective manifolds\",\"authors\":\"A. Ballal\",\"doi\":\"10.1215/00192082-10417484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend a result of Gao Chen regarding the solvability of the twisted deformed Hermitian Yang-Mills equations on compact K\\\\\\\"ahler manifolds to allow for the twisting function to be non-constant and slightly negative in all dimensions. Using this result, we prove that the twisted supercritical dHYM equation on compact, projective manifolds can be solved provided certain numerical conditions are satisfied.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10417484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10417484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们推广了高晨关于紧K\ ahler流形上扭曲变形的hermite Yang-Mills方程的可解性的结果,使得扭曲函数在所有维度上都是非常数和微负的。利用这一结果,证明了紧射影流形上的扭曲超临界dHYM方程在满足一定的数值条件下是可以求解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The supercritical deformed Hermitian Yang–Mills equation on compact projective manifolds
In this paper, we extend a result of Gao Chen regarding the solvability of the twisted deformed Hermitian Yang-Mills equations on compact K\"ahler manifolds to allow for the twisting function to be non-constant and slightly negative in all dimensions. Using this result, we prove that the twisted supercritical dHYM equation on compact, projective manifolds can be solved provided certain numerical conditions are satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信