彼得森刚性问题

Q4 Mathematics
S. Kaliszewski, Tron Omland, John Quigg
{"title":"彼得森刚性问题","authors":"S. Kaliszewski, Tron Omland, John Quigg","doi":"10.15446/recolma.v53nsupl.84095","DOIUrl":null,"url":null,"abstract":"If is an action of a locally compact abelian group G on a C*-algebra A, Takesaki-Takai duality recovers (A, α) up to Morita equivalence from the dual action of Ĝ on the crossed product A × α G. Given a bit more information, Landstad duality recovers (A, α) up to isomorphism. In between these, by modifying a theorem of Pedersen, (A, α) is recovered up to outer conjugacy from the dual action and the position of A in M(A ×α G). Our search (still unsuccessful, somehow irritating) for examples showing the necessity of this latter condition has led us to formulate the \"Pedersen Rigidity problem\". We present numerous situations where the condition is redundant, including G discrete or A stable or commutative. The most interesting of these \"no-go theorems\" is for locally unitary actions on continuous-trace algebras.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84095","citationCount":"0","resultStr":"{\"title\":\"The Pedersen Rigidity Problem\",\"authors\":\"S. Kaliszewski, Tron Omland, John Quigg\",\"doi\":\"10.15446/recolma.v53nsupl.84095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If is an action of a locally compact abelian group G on a C*-algebra A, Takesaki-Takai duality recovers (A, α) up to Morita equivalence from the dual action of Ĝ on the crossed product A × α G. Given a bit more information, Landstad duality recovers (A, α) up to isomorphism. In between these, by modifying a theorem of Pedersen, (A, α) is recovered up to outer conjugacy from the dual action and the position of A in M(A ×α G). Our search (still unsuccessful, somehow irritating) for examples showing the necessity of this latter condition has led us to formulate the \\\"Pedersen Rigidity problem\\\". We present numerous situations where the condition is redundant, including G discrete or A stable or commutative. The most interesting of these \\\"no-go theorems\\\" is for locally unitary actions on continuous-trace algebras.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53nsupl.84095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53nsupl.84095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果是局部紧阿贝尔群G在C*-代数a上的作用,则Takesaki-Takai对偶从Ĝ在叉积a×αG上的对偶作用恢复到Morita等价。给定更多信息,Landstad对偶恢复到同构。在这两者之间,通过修改Pedersen的一个定理,(a,α)从对偶作用和a在M(a×αG)中的位置恢复到外共轭。我们对显示后一种条件的必要性的例子的搜索(仍然没有成功,不知何故令人恼火)导致我们形成了“佩德森刚性问题”。我们提出了许多条件是冗余的情况,包括G离散的或A稳定的或可交换的。这些“不可行定理”中最有趣的是连续迹代数上的局部酉作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Pedersen Rigidity Problem
If is an action of a locally compact abelian group G on a C*-algebra A, Takesaki-Takai duality recovers (A, α) up to Morita equivalence from the dual action of Ĝ on the crossed product A × α G. Given a bit more information, Landstad duality recovers (A, α) up to isomorphism. In between these, by modifying a theorem of Pedersen, (A, α) is recovered up to outer conjugacy from the dual action and the position of A in M(A ×α G). Our search (still unsuccessful, somehow irritating) for examples showing the necessity of this latter condition has led us to formulate the "Pedersen Rigidity problem". We present numerous situations where the condition is redundant, including G discrete or A stable or commutative. The most interesting of these "no-go theorems" is for locally unitary actions on continuous-trace algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信