{"title":"线束平均曲率流的$\\varepsilon$正则性定理","authors":"Xiaoling Han, Hikaru Yamamoto","doi":"10.4310/ajm.2022.v26.n6.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\\varepsilon$-regularity theorem.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An $\\\\varepsilon$-regularity theorem for line bundle mean curvature flow\",\"authors\":\"Xiaoling Han, Hikaru Yamamoto\",\"doi\":\"10.4310/ajm.2022.v26.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\\\\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\\\\varepsilon$-regularity theorem.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2022.v26.n6.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2022.v26.n6.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An $\varepsilon$-regularity theorem for line bundle mean curvature flow
In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\varepsilon$-regularity theorem.