线束平均曲率流的$\varepsilon$正则性定理

IF 0.5 4区 数学 Q3 MATHEMATICS
Xiaoling Han, Hikaru Yamamoto
{"title":"线束平均曲率流的$\\varepsilon$正则性定理","authors":"Xiaoling Han, Hikaru Yamamoto","doi":"10.4310/ajm.2022.v26.n6.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\\varepsilon$-regularity theorem.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An $\\\\varepsilon$-regularity theorem for line bundle mean curvature flow\",\"authors\":\"Xiaoling Han, Hikaru Yamamoto\",\"doi\":\"10.4310/ajm.2022.v26.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\\\\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\\\\varepsilon$-regularity theorem.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2022.v26.n6.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2022.v26.n6.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文研究Jacob和Yau定义的光束平均曲率流。管束平均曲率流是在给定Kahler流形上得到变形HermitianYang-Mills度量的一类抛物流。本文的目的是给出一个线性丛平均曲率流的$\varepsilon$正则性定理。为了建立这个定理,我们提供了一个尺度不变的单调量。作为这个量的一个临界点,我们定义了光束平均曲率流的自收缩解。给出了自收缩算子的Liouville型定理。它在$\varepsilon$正则性定理的证明中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An $\varepsilon$-regularity theorem for line bundle mean curvature flow
In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given Kahler manifold. The goal of this paper is to give an $\varepsilon$-regularity theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It plays an important role in the proof of the $\varepsilon$-regularity theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信