{"title":"罚偏减选择积分:解决薄壳钢与混凝土结构锁紧现象的新方法","authors":"R. Nascimbene","doi":"10.1515/cls-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract The shell structures are commonly used in many civil and industrial and long-span logistic applications. In this research we simply start by applying a degenerated finite element continuum approach. Then we propose a new alternative formulation by splitting the shear energy into two main components, the first one exactly integrated, whereas the second reduced integrated in a proper way. In this numerical and analytical research we present this advanced new approach (herein named penalty partial reduced selective integration) by adding weight coefficients to the splitting energy terms. As a consequence of this formulation, the unwanted locking events are definitively eliminated. A wide range of real and analytical examples, from scientific literature and practical engineering shell design situations, are analyzed and deeply investigated to better understand the level of accuracy and effectiveness of the formulation proposed. Furthermore, comparisons withwell defined and established shell finite elements are made just to yield insight into the predictive capability of the penalty partial reduced selective integration, herein proposed and studied. Hence many examples are used to test this new formulation in order to analyze the numerical behavior of the approximate solution in dependence of the splitting parameters. A simple kind of methodological rules for choosing these numerical non-dimensional parameters are also given.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"352 - 364"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Penalty partial reduced selective integration: a new method to solve locking phenomena in thin shell steel and concrete structures\",\"authors\":\"R. Nascimbene\",\"doi\":\"10.1515/cls-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The shell structures are commonly used in many civil and industrial and long-span logistic applications. In this research we simply start by applying a degenerated finite element continuum approach. Then we propose a new alternative formulation by splitting the shear energy into two main components, the first one exactly integrated, whereas the second reduced integrated in a proper way. In this numerical and analytical research we present this advanced new approach (herein named penalty partial reduced selective integration) by adding weight coefficients to the splitting energy terms. As a consequence of this formulation, the unwanted locking events are definitively eliminated. A wide range of real and analytical examples, from scientific literature and practical engineering shell design situations, are analyzed and deeply investigated to better understand the level of accuracy and effectiveness of the formulation proposed. Furthermore, comparisons withwell defined and established shell finite elements are made just to yield insight into the predictive capability of the penalty partial reduced selective integration, herein proposed and studied. Hence many examples are used to test this new formulation in order to analyze the numerical behavior of the approximate solution in dependence of the splitting parameters. A simple kind of methodological rules for choosing these numerical non-dimensional parameters are also given.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"352 - 364\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Penalty partial reduced selective integration: a new method to solve locking phenomena in thin shell steel and concrete structures
Abstract The shell structures are commonly used in many civil and industrial and long-span logistic applications. In this research we simply start by applying a degenerated finite element continuum approach. Then we propose a new alternative formulation by splitting the shear energy into two main components, the first one exactly integrated, whereas the second reduced integrated in a proper way. In this numerical and analytical research we present this advanced new approach (herein named penalty partial reduced selective integration) by adding weight coefficients to the splitting energy terms. As a consequence of this formulation, the unwanted locking events are definitively eliminated. A wide range of real and analytical examples, from scientific literature and practical engineering shell design situations, are analyzed and deeply investigated to better understand the level of accuracy and effectiveness of the formulation proposed. Furthermore, comparisons withwell defined and established shell finite elements are made just to yield insight into the predictive capability of the penalty partial reduced selective integration, herein proposed and studied. Hence many examples are used to test this new formulation in order to analyze the numerical behavior of the approximate solution in dependence of the splitting parameters. A simple kind of methodological rules for choosing these numerical non-dimensional parameters are also given.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.