{"title":"关于Kleinian群的占星圈极限集","authors":"K. Falk, Katsuhiko Matsuzaki","doi":"10.4171/jfg/93","DOIUrl":null,"url":null,"abstract":"In this paper we partially answer a question of P. Tukia about the size of the difference between the big horospheric limit set and the horospheric limit set of a Kleinian group. We mainly investigate the case of normal subgroups of Kleinian groups of divergence type and show that this difference is of zero conformal measure by using another result obtained here: the Myrberg limit set of a non-elementary Kleinian group is contained in the horospheric limit set of any non-trivial normal subgroup.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On horospheric limit sets of Kleinian groups\",\"authors\":\"K. Falk, Katsuhiko Matsuzaki\",\"doi\":\"10.4171/jfg/93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we partially answer a question of P. Tukia about the size of the difference between the big horospheric limit set and the horospheric limit set of a Kleinian group. We mainly investigate the case of normal subgroups of Kleinian groups of divergence type and show that this difference is of zero conformal measure by using another result obtained here: the Myrberg limit set of a non-elementary Kleinian group is contained in the horospheric limit set of any non-trivial normal subgroup.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/93\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/93","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we partially answer a question of P. Tukia about the size of the difference between the big horospheric limit set and the horospheric limit set of a Kleinian group. We mainly investigate the case of normal subgroups of Kleinian groups of divergence type and show that this difference is of zero conformal measure by using another result obtained here: the Myrberg limit set of a non-elementary Kleinian group is contained in the horospheric limit set of any non-trivial normal subgroup.