使用机器学习技术预测员工的非暴力工作行为

IF 2.7 3区 管理学 Q1 COMMUNICATION
Kusum Lata, N. Garg
{"title":"使用机器学习技术预测员工的非暴力工作行为","authors":"Kusum Lata, N. Garg","doi":"10.1108/ijcma-04-2023-0074","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to develop a model to predict non-violent work behaviour (NVWB) among employees using machine learning techniques.\n\n\nDesign/methodology/approach\nFour machine learning techniques (Naïve Bayes, decision tree, logistic regression and ensemble learning) were used to develop a prediction model for NVWB of employees. Also, 10-fold cross-validation method was used to validate the NVWB prediction models. The confusion matrix is used to derive various performance matrices to express the predictive capability of NVWB models quantitatively.\n\n\nFindings\nThe model developed using random forest technique was identified as best NVWB prediction model, as it resulted in highest true positive rate and true negative rate, thereby resulting in the highest geometric mean, balance and area under receiver operator characteristics curve.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this is one of the pioneer studies that used machine learning techniques to develop a predictive model of NVBW.\n","PeriodicalId":47382,"journal":{"name":"International Journal of Conflict Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting non-violent work behaviour among employees using machine learning techniques\",\"authors\":\"Kusum Lata, N. Garg\",\"doi\":\"10.1108/ijcma-04-2023-0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to develop a model to predict non-violent work behaviour (NVWB) among employees using machine learning techniques.\\n\\n\\nDesign/methodology/approach\\nFour machine learning techniques (Naïve Bayes, decision tree, logistic regression and ensemble learning) were used to develop a prediction model for NVWB of employees. Also, 10-fold cross-validation method was used to validate the NVWB prediction models. The confusion matrix is used to derive various performance matrices to express the predictive capability of NVWB models quantitatively.\\n\\n\\nFindings\\nThe model developed using random forest technique was identified as best NVWB prediction model, as it resulted in highest true positive rate and true negative rate, thereby resulting in the highest geometric mean, balance and area under receiver operator characteristics curve.\\n\\n\\nOriginality/value\\nTo the best of the authors’ knowledge, this is one of the pioneer studies that used machine learning techniques to develop a predictive model of NVBW.\\n\",\"PeriodicalId\":47382,\"journal\":{\"name\":\"International Journal of Conflict Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Conflict Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ijcma-04-2023-0074\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Conflict Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ijcma-04-2023-0074","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

目的本研究旨在开发一个使用机器学习技术预测员工非暴力工作行为(NVWB)的模型。设计/方法论/方法四种机器学习技术(朴素贝叶斯、决策树、逻辑回归和集成学习)用于开发员工NVWB的预测模型。此外,使用10倍交叉验证方法来验证NVWB预测模型。混淆矩阵用于推导各种性能矩阵,以定量表达NVWB模型的预测能力。发现使用随机森林技术开发的模型被确定为最佳NVWB预测模型,因为它产生最高的真阳性率和真阴性率,从而产生最高的几何平均值、平衡和受试者算子特征曲线下面积。原创性/价值据作者所知,这是使用机器学习技术开发NVBW预测模型的先驱研究之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting non-violent work behaviour among employees using machine learning techniques
Purpose This study aims to develop a model to predict non-violent work behaviour (NVWB) among employees using machine learning techniques. Design/methodology/approach Four machine learning techniques (Naïve Bayes, decision tree, logistic regression and ensemble learning) were used to develop a prediction model for NVWB of employees. Also, 10-fold cross-validation method was used to validate the NVWB prediction models. The confusion matrix is used to derive various performance matrices to express the predictive capability of NVWB models quantitatively. Findings The model developed using random forest technique was identified as best NVWB prediction model, as it resulted in highest true positive rate and true negative rate, thereby resulting in the highest geometric mean, balance and area under receiver operator characteristics curve. Originality/value To the best of the authors’ knowledge, this is one of the pioneer studies that used machine learning techniques to develop a predictive model of NVBW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
18.20%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信